A 0.038-mm2 SAW-Less Multiband Transceiver Using an N-Path SC Gain Loop

An N-path switched-capacitor (SC) gain loop is proposed as an area-efficient surface acoustic wave-less wireless transceiver (TXR) for multiband TDD communications. Unlike the direct-conversion transmitter (TX: baseband (BB) filter <inline-formula> <tex-math notation="LaTeX">$\to$ </tex-math></inline-formula> I/Q modulation <inline-formula> <tex-math notation="LaTeX">$\to$ </tex-math></inline-formula> PA driver) and receiver (RX: LNA <inline-formula> <tex-math notation="LaTeX">$\to$ </tex-math></inline-formula> I/Q demodulation <inline-formula> <tex-math notation="LaTeX">$\to$ </tex-math></inline-formula> BB Filter) that the functions are arranged in an open-loop style, here the signal amplification, bandpass filtering, and I/Q (de)modulation are unified in a closed-loop formation, being reconfigurable as a TX or RX with a local oscillator (LO)-defined center frequency. The key advantages are the multiband operation capability in the TX mode, and high resilience to out-of-band (OB) blockers in the RX mode. Fabricated in a 65-nm CMOS, the TXR prototype consumes up to 38.4 mW (20 mW) in the TX (RX) mode at the 1.88-GHz long-term evolution (LTE)-band2. The LO-defined center frequency covers >80% of the TDD-LTE bands with neither on-chip inductors nor external input-matching components. By properly injecting (extracting) the signals into (from) the N-path SC gain loop, the TX mode achieves an −1 dBm output power, a −40 dBc ACLR<sub>EUTRA1</sub>, and a 2% EVM at 1.88 GHz, while showing a −154.5 dBc/Hz OB noise at 80-MHz offset. In the RX mode, a 3.2-dB noise figure and a +8 dBm OB-IIP3 are measured. The active area (0.03 mm<sup>2</sup>) of the TXR is 24<inline-formula> <tex-math notation="LaTeX">$\times$ </tex-math></inline-formula> smaller than the state-of-the-art LTE solutions.

[1]  Robert Bogdan Staszewski,et al.  Analysis and Design of a High-Order Discrete-Time Passive IIR Low-Pass Filter , 2014, IEEE Journal of Solid-State Circuits.

[2]  I. W. Sandberg,et al.  An alternative approach to the realization of network transfer functions: The N-path filter , 1960 .

[3]  Ahmad Mirzaei,et al.  Analysis of Imperfections on Performance of 4-Phase Passive-Mixer-Based High-Q Bandpass Filters in SAW-Less Receivers , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Antonio Liscidini,et al.  A Current-Mode, Low Out-of-Band Noise LTE Transmitter With a Class-A/B Power Mixer , 2014, IEEE Journal of Solid-State Circuits.

[5]  Behzad Razavi,et al.  Channel Selection at RF Using Miller Bandpass Filters , 2014, IEEE Journal of Solid-State Circuits.

[6]  Bing Xu,et al.  9.7 An LTE SAW-less transmitter using 33% duty-cycle LO signals for harmonic suppression , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[7]  Xin He,et al.  A Low-Power, Low-EVM, SAW-Less WCDMA Transmitter Using Direct Quadrature Voltage Modulation , 2009, IEEE Journal of Solid-State Circuits.

[8]  Pui-In Mak,et al.  An RF-to-BB-Current-Reuse Wideband Receiver With Parallel N-Path Active/Passive Mixers and a Single-MOS Pole-Zero LPF , 2014, IEEE Journal of Solid-State Circuits.

[9]  Pui-In Mak,et al.  2.4 A 0.028mm2 11mW single-mixing blocker-tolerant receiver with double-RF N-path filtering, S11 centering, +13dBm OB-IIP3 and 1.5-to-2.9dB NF , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[10]  Eric A. M. Klumperink,et al.  Tunable High-Q N-Path Band-Pass Filters: Modeling and Verification , 2011, IEEE Journal of Solid-State Circuits.

[11]  Rui P Martins,et al.  High-/Mixed-Voltage RF and Analog CMOS Circuits Come of Age , 2010, IEEE Circuits and Systems Magazine.

[12]  Eric A. M. Klumperink,et al.  Tunable N-Path Notch Filters for Blocker Suppression: Modeling and Verification , 2013, IEEE Journal of Solid-State Circuits.

[13]  Pui-In Mak,et al.  26.9 A 0.038mm2 SAW-less multiband transceiver using an N-Path SC gain loop , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[14]  Alyosha C. Molnar,et al.  A Passive Mixer-First Receiver With Digitally Controlled and Widely Tunable RF Interface , 2010, IEEE Journal of Solid-State Circuits.

[15]  Ahmad Mirzaei,et al.  A Blocker-Tolerant, Noise-Cancelling Receiver Suitable for Wideband Wireless Applications , 2012, IEEE Journal of Solid-State Circuits.

[16]  Pui-In Mak,et al.  A Sub-GHz Multi-ISM-Band ZigBee Receiver Using Function-Reuse and Gain-Boosted N-Path Techniques for IoT Applications , 2014, IEEE Journal of Solid-State Circuits.

[17]  Ahmad Mirzaei,et al.  Analysis of Direct-Conversion IQ Transmitters With 25% Duty-Cycle Passive Mixers , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Eric A. M. Klumperink,et al.  Analysis of the Signal Transfer and Folding in N-Path Filters With a Series Inductance , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Xin He,et al.  A 45nm low-power SAW-less WCDMA transmit modulator using direct quadrature voltage modulation , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[20]  Jonathan Borremans,et al.  A 0.9 V 0.4–6 GHz Harmonic Recombination SDR Receiver in 28 nm CMOS With HR3/HR5 and IIP2 Calibration , 2014, IEEE Journal of Solid-State Circuits.

[21]  Pui-In Mak,et al.  9.4 A 0.5V 1.15mW 0.2mm2 Sub-GHz ZigBee receiver supporting 433/860/915/960MHz ISM bands with zero external components , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[22]  Pui-In Mak,et al.  Analysis and Modeling of a Gain-Boosted N-Path Switched-Capacitor Bandpass Filter , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.