Enhanced thermal properties of nanodiamond nanofluids

Abstract Nanodiamond (ND) particles dispersed in ethylene glycol/water mixtures have been reported for their thermal properties and potential heat transfer applications. Commercially available ultra-dispersed diamond soot was treated with sulfuric acid⿿nitric acids to form single ND particles ⿿ characterized by various techniques ⿿ then prepared ND nanofluids and then measured thermal conductivity and viscosity by experimentally. The enhanced thermal conductivity for 1.0% of ND/20:80, ND/40:60 and ND/60:40 nanofluids is 17.8%, 14.2% and 11.4%; enhanced viscosity is 2.74-times, 1.73-times and 1.92-times at temperature of 60 °C, respectively. The heat transfer benefits of ND nanofluids in laminar to turbulent flow have been analyzed theoretically by using thermal properties.

[1]  A. Teja,et al.  The thermal conductivity of the molten NaNO3-KNO3 eutectic between 525 and 590 K , 1992 .

[2]  K. Leong,et al.  Investigations of thermal conductivity and viscosity of nanofluids , 2008 .

[3]  A. Sousa,et al.  Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid , 2013 .

[4]  K. V. Sharma,et al.  Thermal conductivity enhancement of nanoparticles in distilled water , 2008 .

[5]  Masaki Ozawa,et al.  A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. , 2009, ACS nano.

[6]  Huaqing Xie,et al.  Thermal performance enhancement in nanofluids containing diamond nanoparticles , 2009 .

[7]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[8]  Olga Shenderova,et al.  Ultrananocrystalline Diamond: Synthesis, Properties, and Applications , 2006 .

[9]  D. Das,et al.  Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties , 2009 .

[10]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[11]  Saeed Zeinali Heris,et al.  Heat Transfer Properties of Nanodiamond–Engine Oil Nanofluid in Laminar Flow , 2009 .

[12]  Kai Xu,et al.  FTIR study of ultradispersed diamond powder synthesized by explosive detonation , 1995 .

[13]  Karen Lozano,et al.  Nanodiamond-based thermal fluids. , 2014, ACS applied materials & interfaces.

[14]  Olga Shenderova,et al.  Thermal transport properties of diamond-based nanofluids and nanocomposites , 2006 .

[15]  Refrigerating ASHRAE handbook : 1985 Fundamentals , 1985 .

[16]  Amanda S. Barnard,et al.  Self-assembly in nanodiamond agglutinates , 2008 .

[17]  D. Das,et al.  Experimental determination of thermal conductivity of three nanofluids and development of new correlations , 2009 .

[18]  A. Sousa,et al.  Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture , 2012 .

[19]  Park Sung Dae,et al.  Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications , 2011 .

[20]  Xing Zhang,et al.  Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles , 2006 .

[21]  A. Gavili,et al.  The thermal conductivity of water base ferrofluids under magnetic field , 2012 .

[22]  Valerii Yu. Dolmatov,et al.  Detonation synthesis ultradispersed diamonds: properties and applications , 2001 .

[23]  Jinlin Wang,et al.  Measurements of nanofluid viscosity and its implications for thermal applications , 2006 .

[24]  Qingsong Yu,et al.  Effect of nanofluid on the heat transport capability in an oscillating heat pipe , 2006 .

[25]  Y. Ahn,et al.  Investigation on characteristics of thermal conductivity enhancement of nanofluids , 2006 .

[26]  Jae Won Lee,et al.  Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles , 2012 .

[27]  Debabrata Dash,et al.  Nanodiamonds activate blood platelets and induce thromboembolism. , 2014, Nanomedicine.

[28]  Huaqing Xie,et al.  Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid , 2009 .

[29]  Yoichiro Sato,et al.  Diffuse reflectance infrared Fourier-transform study of the direct thermal fluorination of diamond powder surfaces , 1995 .

[30]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[31]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[32]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[33]  Anke Krüger,et al.  Surface functionalisation of detonation diamond suitable for biological applications , 2006 .

[34]  Hongwei Xie,et al.  Thermal Conductivity of Suspensions Containing Nanosized SiC Particles , 2002 .

[35]  Jerald D. Parker,et al.  Heating, ventilating, and air conditioning , 1980 .

[36]  Masayoshi Umeno,et al.  Carbon nanofibers and multiwalled carbon nanotubes from camphor and their field electron emission , 2009 .

[37]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.

[38]  E. Goharshadi,et al.  Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water , 2010 .

[39]  Minyung Lee,et al.  Surface functionalization and physicochemical characterization of diamond nanoparticles , 2009 .

[40]  M. Ozawa,et al.  Preparation and Behavior of Brownish, Clear Nanodiamond Colloids , 2007 .

[41]  Yang Li,et al.  Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles , 2011 .