Finite Dierence Methods for Dieren tial Equations

[1]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[2]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[3]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[4]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[5]  Eitan Tadmor,et al.  From Semidiscrete to Fully Discrete: Stability of Runge-Kutta Schemes by The Energy Method , 1998, SIAM Rev..

[6]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[7]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[8]  Lloyd N. Trefethen,et al.  Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues , 1990 .

[9]  Gene H. Golub,et al.  Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..

[10]  D. Young,et al.  Analysis of the SOR iteration for the 9-point Laplacian , 1988 .

[11]  L. Trefethen,et al.  Fourier Analysis of the SOR Iteration , 1988 .

[12]  L. Trefethen,et al.  An Instability Phenomenon in Spectral Methods , 1987 .

[13]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[14]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[15]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[16]  J. Cole,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[17]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[18]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[19]  P. Davis Interpolation and approximation , 1965 .

[20]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[21]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[22]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[23]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[24]  David M. Young,et al.  Applied Iterative Methods , 2004 .

[25]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[26]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[27]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[28]  B. A. Wade,et al.  A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions , 1997 .

[29]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[30]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[31]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[32]  Thomas F. Coleman,et al.  Handbook for matrix computations , 1988 .

[33]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[34]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[35]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[36]  G. Golub Matrix computations , 1983 .

[37]  F. G. Friedlander Introduction to the theory of distributions , 1982 .

[38]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[39]  H. Keller Numerical Solution of Two Point Boundary Value Problems , 1976 .

[40]  D. Young,et al.  Iterative Solution of Large Linear Systems. , 1973 .

[41]  R. Usmani Numerical solution of boundary value problems in ordinary differential equations , 1967 .