Phase transformations during processing and in vitro degradation of porous calcium polyphosphates

[1]  R. Kandel,et al.  Calcium polyphosphate particulates for bone void filler applications. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[2]  E. Toyserkani,et al.  Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties. , 2014, Journal of biomedical materials research. Part B, Applied biomaterials.

[3]  E. Toyserkani,et al.  Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies. , 2013, Journal of biomedical materials research. Part B, Applied biomaterials.

[4]  R. Kandel,et al.  Porous calcium polyphosphate as load-bearing bone substitutes: in vivo study. , 2013, Journal of biomedical materials research. Part B, Applied biomaterials.

[5]  H. Frei,et al.  In vivo evaluation of calcium polyphosphate for bone regeneration , 2012, Journal of biomaterials applications.

[6]  M. Grynpas,et al.  Relationships Between Polyphosphate Chemistry, Biochemistry and Apatite Biomineralization , 2009 .

[7]  M. Grynpas,et al.  Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. , 2008, Chemical reviews.

[8]  C. Wan,et al.  Effect of polymerization degree of calcium polyphosphate on its microstructure and in vitro degradation performance , 2008, Journal of materials science. Materials in medicine.

[9]  J. Weber,et al.  Synthesis, Crystal Structure, and Characterization (Vibrational and Solid-State 31P MAS NMR Spectroscopy) of the High-Temperature Modification of Calcium catena-Polyphosphate(V). , 2008 .

[10]  F. Mauri,et al.  First Principles Calculations of NMR Parameters in Biocompatible Materials Science: The Case Study of Calcium Phosphates, β- and γ-Ca(PO3)2. Combination with MAS-J Experiments , 2007 .

[11]  S. Waldman,et al.  Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model. , 2006, Biomaterials.

[12]  Yuanwei Chen,et al.  Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. , 2006, Biomaterials.

[13]  M. Francis The inhibition of calcium hydroxyapatite crystal growth by polyphosphonates and polyphosphates , 2005, Calcified Tissue Research.

[14]  Hui Li,et al.  Phase transformations and structure characterization of calcium polyphosphate during sintering process , 2004 .

[15]  R. Kandel,et al.  Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies. , 2002, Biomaterials.

[16]  R. Kandel,et al.  Porous calcium polyphosphate scaffolds for bone substitute applications -- in vitro characterization. , 2001, Biomaterials.

[17]  R. Pilliar,et al.  On the Sintering Characteristics of Calcium Polyphosphates , 2000 .

[18]  P. Hartmann,et al.  New 2D NMR experiments for determining the structure of phosphate glasses: a review , 2000 .

[19]  P. Hartmann,et al.  Measurements of chain length distributions in calcium phosphate glasses using 2D 31P double quantum NMR. , 1998, Solid state nuclear magnetic resonance.

[20]  R. Graf,et al.  Structure of crystalline phosphates from P-31 double-quantum NMR spectroscopy , 1996 .

[21]  H. Fleisch,et al.  Inhibition of Aortic Calcification by means of Pyrophosphate and Polyphosphates , 1965, Nature.

[22]  A. O. McIntosh,et al.  X-Ray Diffraction Powder Patterns of Calcium Phosphates , 1956 .

[23]  G. T. Faust,et al.  The binary system P 2 O 5 ; 2 CaO.P 2 O 5 , 1944 .