Mechanosensation in Caenorhabditis elegans.

[1]  J. Hodgkin Male Phenotypes and Mating Efficiency in CAENORHABDITIS ELEGANS. , 1983, Genetics.

[2]  C. Rankin Context conditioning in habituation in the nematode Caenorhabditis elegans. , 2000, Behavioral neuroscience.

[3]  M. Barr,et al.  Functional characterization of the C. elegans nephrocystins NPHP-1 and NPHP-4 and their role in cilia and male sensory behaviors. , 2005, Experimental cell research.

[4]  Cori Bargmann,et al.  Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans , 1995, Cell.

[5]  P. Morgan,et al.  A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans. , 1999, Genetics.

[6]  A. J. Hudspeth,et al.  Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the Bullfrog's saccular hair cell , 1988, Neuron.

[7]  Jh Thomas,et al.  Regulation of a periodic motor program in C. elegans , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Cori Bargmann,et al.  Chemosensory cell function in the behavior and development of Caenorhabditis elegans. , 1990, Cold Spring Harbor symposia on quantitative biology.

[9]  Jing Zhou,et al.  Constitutive Activation of G-proteins by Polycystin-1 Is Antagonized by Polycystin-2* , 2002, The Journal of Biological Chemistry.

[10]  N. Perrimon,et al.  A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  M. Chalfie,et al.  A stomatin-like protein necessary for mechanosensation in C. elegans , 1995, Nature.

[13]  Martin Chalfie,et al.  Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans , 1994, Nature.

[14]  H. Horvitz,et al.  The Caenorhabditis elegans Behavioral Gene unc‐24 Encodes a Novel Bipartite Protein Similar to Both Erythrocyte Band 7.2 (Stomatin) and Nonspecific Lipid Transfer Protein , 1996, Journal of neurochemistry.

[15]  Male Development and Mating Behavior , 1997 .

[16]  A. Hudspeth,et al.  Response latency of vertebrate hair cells. , 1979, Biophysical journal.

[17]  D. Corey,et al.  The Nematode Degenerin UNC-105 Forms Ion Channels that Are Activated by Degeneration- or Hypercontraction-Causing Mutations , 1998, Neuron.

[18]  Nektarios Tavernarakis,et al.  Caenorhabditis Elegans Degenerins and Vertebrate Enac Ion Channels Contain an Extracellular Domain Related to Venom Neurotoxins , 2000, Journal of neurogenetics.

[19]  M. Chalfie,et al.  Organization of neuronal microtubules in the nematode Caenorhabditis elegans , 1979, The Journal of cell biology.

[20]  C. Rankin,et al.  Heat shock disrupts long-term memory consolidation in Caenorhabditis elegans. , 1995, Learning & memory.

[21]  Martin Chalfie,et al.  The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel , 2002, Nature.

[22]  D. Hall,et al.  Mutations in the Caenorhabditis elegans beta-tubulin gene mec-7: effects on microtubule assembly and stability and on tubulin autoregulation. , 1994, Journal of cell science.

[23]  C. Montell The venerable inveterate invertebrate TRP channels. , 2003, Cell calcium.

[24]  S. Lockery,et al.  Active Currents Regulate Sensitivity and Dynamic Range in C. elegans Neurons , 1998, Neuron.

[25]  M. Barr,et al.  The KLP-6 Kinesin Is Required for Male Mating Behaviors and Polycystin Localization in Caenorhabditis elegans , 2005, Current Biology.

[26]  D. Riddle C. Elegans II , 1998 .

[27]  V. Sukhatme,et al.  Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  G. Germino,et al.  Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents , 2000, Nature.

[29]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[30]  M. Driscoll,et al.  In Vivo Structure–Function Analyses ofCaenorhabditis elegans MEC-4, a Candidate Mechanosensory Ion Channel Subunit , 2000, The Journal of Neuroscience.

[31]  Yi Zheng,et al.  Decoding of Polymodal Sensory Stimuli by Postsynaptic Glutamate Receptors in C. elegans , 2002, Neuron.

[32]  P. Morgan,et al.  A stomatin and a degenerin interact in lipid rafts of the nervous system of Caenorhabditis elegans. , 2004, American journal of physiology. Cell physiology.

[33]  S. Ward,et al.  Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans , 1975, The Journal of comparative neurology.

[34]  S. R. Wicks,et al.  CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. , 2000, Developmental biology.

[35]  J. Culotti,et al.  Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. , 1978, Genetics.

[36]  Catharine H. Rankin,et al.  Mutations of the Caenorhabditis elegansBrain-Specific Inorganic Phosphate Transporter eat-4Affect Habituation of the Tap–Withdrawal Response without Affecting the Response Itself , 2000, The Journal of Neuroscience.

[37]  Jing Zhou,et al.  Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells , 2003, Nature Genetics.

[38]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[39]  L. Avery,et al.  LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. , 2003, Developmental biology.

[40]  Rainer W Friedrich,et al.  NompC TRP Channel Required for Vertebrate Sensory Hair Cell Mechanotransduction , 2003, Science.

[41]  When Caenorhabditis elegans (Nematoda: Rhabditidae) bumps into a bead , 1976 .

[42]  Douglas S. Portman,et al.  Identification of C. elegans sensory ray genes using whole-genome expression profiling. , 2004, Developmental biology.

[43]  A. Coulson,et al.  mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. , 1989, Genes & development.

[44]  J. Hubbard,et al.  The Peripheral Nervous System , 1974, Springer US.

[45]  Ping Zhang,et al.  Structure and regulation of amiloride-sensitive sodium channels. , 2000, Annual review of physiology.

[46]  M. Lazdunski,et al.  A mammalian two pore domain mechano‐gated S‐like K+ channel , 1998, The EMBO journal.

[47]  D. Moerman,et al.  The mec-8 gene of C. elegans encodes a protein with two RNA recognition motifs and regulates alternative splicing of unc-52 transcripts. , 1996, Development.

[48]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  D. Hall,et al.  The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway , 2001, Current Biology.

[50]  J. Culotti,et al.  MEC-12, an alpha-tubulin required for touch sensitivity in C. elegans. , 1999, Journal of cell science.

[51]  Monica Driscoll,et al.  A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans , 1994, Nature.

[52]  M. Chalfie,et al.  mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans , 1988, Cell.

[53]  S. W. Emmons,et al.  Genetic basis of male sexual behavior. , 2003, Journal of neurobiology.

[54]  J. Kaplan,et al.  Distinct Signaling Pathways Mediate Touch and Osmosensory Responses in a Polymodal Sensory Neuron , 1999, The Journal of Neuroscience.

[55]  R. Baran,et al.  The C. elegans homeodomain gene unc-42 regulates chemosensory and glutamate receptor expression. , 1999, Development.

[56]  D. van der Kooy,et al.  Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans , 2004, The EMBO journal.

[57]  Tight-seal whole-cell patch clamping of Caenorhabditis elegans neurons. , 1998, Methods in enzymology.

[58]  M. Chalfie,et al.  Cooperative interactions between the Caenorhabditis elegans homeoproteins UNC-86 and MEC-3. , 1993, Science.

[59]  S. R. Wicks,et al.  Integration of mechanosensory stimuli in Caenorhabditis elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  L. Ségalat,et al.  Patch clamp study of the UNC‐105 degenerin and its interaction with the LET‐2 collagen in Caenorhabditis elegans muscle , 2004, The Journal of physiology.

[61]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[62]  R. Hardie,et al.  The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors , 1992, Neuron.

[63]  D. Hall,et al.  Combinatorial control of touch receptor neuron expression in Caenorhabditis elegans. , 1993, Development.

[64]  P. Sternberg,et al.  Sensory regulation of male mating behavior in caenorhabditis elegans , 1995, Neuron.

[65]  Gary Ruvkun,et al.  The unc-86 gene product couples cell lineage and cell identity in C. elegans , 1990, Cell.

[66]  P. Snyder,et al.  Gating Induces a Conformational Change in the Outer Vestibule of Enac , 2000, The Journal of general physiology.

[67]  Monica Driscoll,et al.  Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor , 1995, Nature.

[68]  M. Chalfie,et al.  MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation , 2002, Nature.

[69]  J. Sulston,et al.  Dopaminergic neurons in the nematode Caenorhabditis elegans , 1975, The Journal of comparative neurology.

[70]  M. Chalfie,et al.  The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration , 1991, Nature.

[71]  Jing Zhou,et al.  Polycystins and mechanosensation in renal and nodal cilia , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[72]  M. Chalfie,et al.  Extracellular Proteins Needed for C. elegans Mechanosensation , 1996, Neuron.

[73]  P. Morgan,et al.  Model organisms: new insights into ion channel and transporter function. Stomatin homologues interact in Caenorhabditis elegans. , 2001, American journal of physiology. Cell physiology.

[74]  M. Chalfie,et al.  Inhibition of touch cell fate by egl-44 and egl-46 in C. elegans. , 2001, Genes & development.

[75]  G. Stewart The membrane defect in hereditary stomatocytosis. , 1993, Bailliere's clinical haematology.

[76]  C. Rankin,et al.  GLR-1, a Non-NMDA Glutamate Receptor Homolog, Is Critical for Long-Term Memory in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[77]  M. Chalfie,et al.  Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Barrett C. Foat,et al.  Identification of genes expressed in C. elegans touch receptor neurons , 2002, Nature.

[79]  Cori Bargmann,et al.  Combinatorial Expression of TRPV Channel Proteins Defines Their Sensory Functions and Subcellular Localization in C. elegans Neurons , 2002, Neuron.

[80]  W. A. Johnson,et al.  Ripped Pocket and Pickpocket, Novel Drosophila DEG/ENaC Subunits Expressed in Early Development and in Mechanosensory Neurons , 1998, The Journal of cell biology.

[81]  J. Sulston,et al.  The Caenorhabditis elegans male: postembryonic development of nongonadal structures. , 1980, Developmental biology.

[82]  M. Chalfie,et al.  Regulation of touch receptor differentiation by the Caenorhabditis elegans mec-3 and unc-86 genes. , 1998, Development.

[83]  G. Ruvkun,et al.  Regulation of the mec‐3 gene by the C.elegans homeoproteins UNC‐86 and MEC‐3. , 1992, The EMBO journal.

[84]  Mark J Alkema,et al.  Tyramine Functions Independently of Octopamine in the Caenorhabditis elegans Nervous System , 2005, Neuron.

[85]  Donghee Kim,et al.  TREK-2, a New Member of the Mechanosensitive Tandem-pore K+ Channel Family* , 2000, The Journal of Biological Chemistry.

[86]  M. Chalfie,et al.  Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans , 1982, The Journal of cell biology.

[87]  Wendy S. Schackwitz,et al.  Mutations affecting the chemosensory neurons of Caenorhabditis elegans. , 1995, Genetics.

[88]  M. Chalfie,et al.  The Caenorhabditis elegans spalt-like gene sem-4 restricts touch cell fate by repressing the selector Hox gene egl-5 and the effector gene mec-3 , 2003, Development.

[89]  Martin Chalfie,et al.  Mutations that lead to reiterations in the cell lineages of C. elegans , 1981, Cell.

[90]  Robert K Herman,et al.  The Identities of sym-2, sym-3 and sym-4, Three Genes That Are Synthetically Lethal With mec-8 in Caenorhabditis elegans Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY220985, AY221634, AY223545, and AY372076. , 2004, Genetics.

[91]  E. Hedgecock,et al.  Hemicentin, a conserved extracellular member of the immunoglobulin superfamily, organizes epithelial and other cell attachments into oriented line-shaped junctions. , 2001, Development.

[92]  M. Chalfie,et al.  Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. , 1989, Science.

[93]  H. Horvitz,et al.  The C. elegans cell lineage and differentiation gene unc-86 encodes a protein with a homeodomain and extended similarity to transcription factors , 1988, Cell.

[94]  Gilles Laurent,et al.  painless, a Drosophila Gene Essential for Nociception , 2003, Cell.

[95]  M. Chalfie,et al.  Cell-cell interactions in the guidance of late-developing neurons in Caenorhabditis elegans. , 1988, Science.

[96]  D. W. McBride,et al.  The pharmacology of mechanogated membrane ion channels. , 1996, Pharmacological reviews.

[97]  C. Rankin,et al.  Analyses of habituation in Caenorhabditis elegans. , 2001, Learning & memory.

[98]  H. Horvitz,et al.  A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Miriam B Goodman,et al.  Transducing touch in Caenorhabditis elegans. , 2003, Annual review of physiology.

[100]  R. Kerr,et al.  In Vivo Imaging of C. elegans Mechanosensory Neurons Demonstrates a Specific Role for the MEC-4 Channel in the Process of Gentle Touch Sensation , 2003, Neuron.

[101]  Nektarios Tavernarakis,et al.  unc-8, a DEG/ENaC Family Member, Encodes a Subunit of a Candidate Mechanically Gated Channel That Modulates C. elegans Locomotion , 1997, Neuron.

[102]  M. Chalfie,et al.  The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. , 1989, Genes & development.

[103]  G. Germino,et al.  PKD1 interacts with PKD2 through a probable coiled-coil domain , 1997, Nature Genetics.

[104]  A. J. Hudspeth,et al.  How the ear's works work , 1989, Nature.

[105]  M. Chalfie,et al.  Extracellular Proteins Organize the Mechanosensory Channel Complex in C. elegans Touch Receptor Neurons , 2004, Neuron.

[106]  J. Kaplan,et al.  Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor , 1995, Nature.

[107]  C. Zuker,et al.  Genetic dissection of mechanosensory transduction: Mechanoreception-defective mutations of drosophila , 1994, Neuron.

[108]  Heidi L. Rehm,et al.  TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells , 2004, Nature.

[109]  Paul W. Sternberg,et al.  A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans , 1999, Nature.

[110]  C. Rankin,et al.  Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. , 1992, Behavioral neuroscience.

[111]  H. Horvitz,et al.  The GABAergic nervous system of Caenorhabditis elegans , 1993, Nature.

[112]  J. Sulston,et al.  Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. , 1981, Developmental biology.

[113]  C. H. Rankin,et al.  Caenorhabditis elegans: A new model system for the study of learning and memory , 1990, Behavioural Brain Research.

[114]  W. Shreffler,et al.  The unc-8 and sup-40 genes regulate ion channel function in Caenorhabditis elegans motorneurons. , 1995, Genetics.

[115]  C M Loer,et al.  Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[116]  M. Chalfie,et al.  The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans , 1990, Nature.

[117]  H. Horvitz,et al.  EAT-4, a Homolog of a Mammalian Sodium-Dependent Inorganic Phosphate Cotransporter, Is Necessary for Glutamatergic Neurotransmission in Caenorhabditis elegans , 1999, The Journal of Neuroscience.

[118]  K. Nagata,et al.  Nociceptor and Hair Cell Transducer Properties of TRPA1, a Channel for Pain and Hearing , 2005, The Journal of Neuroscience.

[119]  C. Zuker,et al.  A Drosophila mechanosensory transduction channel. , 2000, Science.

[120]  C. Rankin,et al.  A developmental analysis of spontaneous and reflexive reversals in the nematode Caenorhabditis elegans. , 1990, Journal of neurobiology.

[121]  Cori Bargmann,et al.  Specific Polyunsaturated Fatty Acids Drive TRPV-Dependent Sensory Signaling In Vivo , 2004, Cell.

[122]  David M Tobin,et al.  Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[123]  M. Chalfie,et al.  MEC-2 Is Recruited to the Putative Mechanosensory Complex in C. elegans Touch Receptor Neurons through Its Stomatin-like Domain , 2004, Current Biology.

[124]  R. Kerr,et al.  In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents , 2005, The EMBO journal.

[125]  L. Schild,et al.  Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. , 2002, Physiological reviews.

[126]  Zhefeng Gong,et al.  Two Interdependent TRPV Channel Subunits, Inactive and Nanchung, Mediate Hearing in Drosophila , 2004, The Journal of Neuroscience.

[127]  M. Chalfie,et al.  Regulation of Caenorhabditis elegans degenerin proteins by a putative extracellular domain , 1995, Current Biology.

[128]  K. Nishikawa,et al.  Exclusive expression of C. elegans osm-3 kinesin gene in chemosensory neurons open to the external environment. , 1995, Journal of molecular biology.

[129]  F. Abboud,et al.  Localization of β and γ subunits of ENaC in sensory nerve endings in the rat foot pad , 2000, Brain Research.

[130]  O. Krishtal The ASICs: Signaling molecules? Modulators? , 2003, Trends in Neurosciences.

[131]  M. Bate,et al.  The development of Drosophila melanogaster , 1993 .

[132]  Cori Bargmann,et al.  OSM-9, A Novel Protein with Structural Similarity to Channels, Is Required for Olfaction, Mechanosensation, and Olfactory Adaptation inCaenorhabditis elegans , 1997, The Journal of Neuroscience.

[133]  M. Chalfie,et al.  The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals , 2005, Nature Neuroscience.

[134]  S. W. Emmons,et al.  Signal transduction: Mating, channels and kidney cysts , 1999, Nature.