MUSIC for joint frequency estimation: Stability with compressive measurements
暂无分享,去创建一个
[1] Vilmos Komornik,et al. Fourier Series in Control Theory , 2005 .
[2] Petre Stoica,et al. MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.
[3] M. Viberg,et al. Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..
[4] Yuxin Chen,et al. Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.
[5] Wenjing Liao,et al. Super-resolution by compressive sensing algorithms , 2012, 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).
[6] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[7] Sergiy A. Vorobyov,et al. Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays , 2005, IEEE Transactions on Signal Processing.
[8] Emmanuel J. Cand. Towards a Mathematical Theory of Super-Resolution , 2012 .
[9] Ali Pezeshki,et al. Threshold Effects in Parameter Estimation From Compressed Data , 2013, IEEE Transactions on Signal Processing.
[10] Ralph Otto Schmidt,et al. A signal subspace approach to multiple emitter location and spectral estimation , 1981 .
[11] D. Donoho. Superresolution via sparsity constraints , 1992 .
[12] Albert Fannjiang,et al. The MUSIC algorithm for sparse objects: a compressed sensing analysis , 2010, ArXiv.
[13] Parikshit Shah,et al. Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.
[14] Lena Jaeger,et al. Fourier Series In Control Theory , 2016 .
[15] Xavier Mestre,et al. MUSIC, G-MUSIC, and Maximum-Likelihood Performance Breakdown , 2008, IEEE Transactions on Signal Processing.
[16] A. Ingham. Some trigonometrical inequalities with applications to the theory of series , 1936 .
[17] A. Robert Calderbank,et al. Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..
[18] J. Devaney,et al. 1 Super-resolution Processing of Multi-static Data Using Time Reversal and MUSIC A , 2000 .
[19] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[20] Michael D. Zoltowski,et al. Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform Cartesian array grid , 2000, IEEE Trans. Signal Process..
[21] A. Lee Swindlehurst,et al. A Performance Analysis ofSubspace-Based Methods in thePresence of Model Errors { Part I : The MUSIC AlgorithmA , 1992 .
[22] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[23] John K. Thomas,et al. The probability of a subspace swap in the SVD , 1995, IEEE Trans. Signal Process..
[24] T. Tao. An uncertainty principle for cyclic groups of prime order , 2003, math/0308286.
[25] Wenjing Liao,et al. Coherence Pattern-Guided Compressive Sensing with Unresolved Grids , 2011, SIAM J. Imaging Sci..
[26] Wenjing Liao,et al. Mismatch and resolution in compressive imaging , 2011, Optical Engineering + Applications.
[27] Adriaan van den Bos,et al. Resolution: a survey , 1997 .
[28] Wenjing Liao,et al. MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.
[29] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[30] Yuxin Chen,et al. Spectral Compressed Sensing via Structured Matrix Completion , 2013, ICML.
[31] Marco F. Duarte,et al. Spectral compressive sensing , 2013 .
[32] Emmanuel J. Candès,et al. Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.
[33] Jean-Jacques Fuchs. Extension of the Pisarenko method to sparse linear arrays , 1997, IEEE Trans. Signal Process..
[34] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[35] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[36] Alexei Gorokhov,et al. Comparison of DOA estimation performance for various types of sparse antenna array geometries , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).
[37] F. Li,et al. Performance analysis for DOA estimation algorithms: unification, simplification, and observations , 1993 .
[38] Emmanuel J. Candès,et al. Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.
[39] Petre Stoica,et al. Spectral Analysis of Signals , 2009 .