A forward-trajectory global semi-Lagrangian transport scheme
暂无分享,去创建一个
Jeffrey S. Scroggs | F. Semazzi | R. Nair | J. S. Scroggs | Ramachandran D. Nair | Frederick H. M. Semazzi
[1] J. Williamson. Low-storage Runge-Kutta schemes , 1980 .
[2] F. Semazzi,et al. Efficient Conservative Global Transport Schemes for Climate and Atmospheric Chemistry Models , 2002 .
[3] A. Staniforth,et al. The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results , 1998 .
[4] A. Robert. A Semi-Lagrangian and Semi-Implicit Numerical Integration Scheme for the Primitive Meteorological Equations , 1982 .
[5] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[7] André Robert,et al. A stable numerical integration scheme for the primitive meteorological equations , 1981 .
[8] Miodrag Rančić. An Efficient, Conservative, Monotonic Remapping for Semi-Lagrangian Transport Algorithms , 1995 .
[9] Harold Ritchie,et al. Semi-Lagrangian advection on a Gaussian grid , 1987 .
[10] Tim N. Phillips,et al. A Semi-Lagrangian Finite Volume Method for Newtonian Contraction Flows , 2000, SIAM J. Sci. Comput..
[11] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[12] Francis X. Giraldo,et al. Trajectory Calculations for Spherical Geodesic Grids in Cartesian Space , 1999 .
[13] George Em Karniadakis,et al. A semi-Lagrangian high-order method for Navier-Stokes equations , 2001 .
[14] P. Smolarkiewicz,et al. A class of semi-Lagrangian approximations for fluids. , 1992 .
[15] Lance M. Leslie,et al. Generalized Adams–Bashforth time integration schemes for a semi‐Lagrangian model employing the second‐derivative form of the horizontal momentum equations , 1996 .
[16] A. Staniforth,et al. Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .
[17] Stephen J. Thomas,et al. The Cost-Effectiveness of Semi-Lagrangian Advection , 1996 .
[18] Jean Côté,et al. Cascade interpolation for semi‐Lagrangian advection over the sphere , 1999 .
[19] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[20] Jeffrey S. Scroggs,et al. A global nonhydrostatic semi-Lagrangian atmospheric model without orography , 1995 .
[21] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[22] Charles A. Doswell,et al. A Kinematic Analysis of Frontogenesis Associated with a Nondivergent Vortex , 1984 .
[23] Lance M. Leslie,et al. An Efficient Interpolation Procedure for High-Order Three-Dimensional Semi-Lagrangian Models , 1991 .
[24] John K. Dukowicz,et al. Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .
[25] J. P. René Laprise,et al. A Class of Semi-Lagrangian Integrated-Mass (SLM) Numerical Transport Algorithms , 1995 .
[26] Ramachandran D. Nair,et al. The Mass-Conservative Cell-Integrated Semi-Lagrangian Advection Scheme on the Sphere , 2002 .
[27] Shian‐Jiann Lin,et al. Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .
[28] J. McGregor,et al. Economical Determination of Departure Points for Semi-Lagrangian Models , 1993 .
[29] L. Leslie,et al. Three-Dimensional Mass-Conserving Semi-Lagrangian Scheme Employing Forward Trajectories , 1995 .
[30] P. Rasch,et al. Two-dimensional semi-Lagrangian trans-port with shape-preserving interpolation , 1989 .
[31] Clive Temperton,et al. A two‐time‐level semi‐Lagrangian global spectral model , 2001 .
[32] Jeffrey S. Scroggs,et al. A conservative semi‐Lagrangian method for multidimensional fluid dynamics applications , 1995 .
[33] David L. Williamson,et al. A comparison of semi-lagrangian and Eulerian polar climate simulations , 1998 .
[34] L. Leslie,et al. An Efficient Semi-Lagrangian Scheme Using Third-Order Semi-Implicit Time Integration and Forward Trajectories , 1994 .
[35] P. Swarztrauber,et al. A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .
[36] John K. Dukowicz,et al. Incremental Remapping as a Transport/Advection Algorithm , 2000 .
[37] A. Staniforth,et al. The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation , 1998 .
[38] M. Falcone,et al. Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .
[39] Stephen J. Thomas,et al. Parallel algorithms for semi-lagrangian advection , 1997, International Journal for Numerical Methods in Fluids.
[40] J. Côté,et al. Monotonic cascade interpolation for semi‐lagrangian advection , 1999 .
[41] J. M. Watt. Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .