A forward-trajectory global semi-Lagrangian transport scheme

A forward-trajectory semi-Lagrangian scheme for advection on the surface of the sphere is proposed. The advection scheme utilizes the forward (downstream) trajectory originating at Eulerian grid points and cascade interpolation, a sequence of 1D interpolations, to transfer data from the downstream Lagrangian points to the Eulerian points. A new and more accurate algorithm determines pole values. The resulting forward-trajectory semi-Lagrangian scheme can easily incorporate high-order trajectory integration methods. This avoids the standard iterative process in a typical backward-trajectory scheme. Two third-order accurate schemes and a second-order accurate scheme are presented. A mass-conservative version of the forward-trajectory semi-Lagrangian scheme is also derived within the cascade interpolation framework. Mass from a Lagrangian cell is transferred to the corresponding Eulerian cell with two 1D remappings through an intermediate cell system. Mass in the polar region is redistributed by way of an efficient local approximation. The resulting scheme is globally conservative, but restricted to meridional Courant number, Cθ ≤ 1.

[1]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[2]  F. Semazzi,et al.  Efficient Conservative Global Transport Schemes for Climate and Atmospheric Chemistry Models , 2002 .

[3]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results , 1998 .

[4]  A. Robert A Semi-Lagrangian and Semi-Implicit Numerical Integration Scheme for the Primitive Meteorological Equations , 1982 .

[5]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[6]  An Examination of Alternative Extrapolations to Find the Departure Point Position in a “Two-Time-Level” Semi-Lagrangian Integration , 1999 .

[7]  André Robert,et al.  A stable numerical integration scheme for the primitive meteorological equations , 1981 .

[8]  Miodrag Rančić An Efficient, Conservative, Monotonic Remapping for Semi-Lagrangian Transport Algorithms , 1995 .

[9]  Harold Ritchie,et al.  Semi-Lagrangian advection on a Gaussian grid , 1987 .

[10]  Tim N. Phillips,et al.  A Semi-Lagrangian Finite Volume Method for Newtonian Contraction Flows , 2000, SIAM J. Sci. Comput..

[11]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[12]  Francis X. Giraldo,et al.  Trajectory Calculations for Spherical Geodesic Grids in Cartesian Space , 1999 .

[13]  George Em Karniadakis,et al.  A semi-Lagrangian high-order method for Navier-Stokes equations , 2001 .

[14]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[15]  Lance M. Leslie,et al.  Generalized Adams–Bashforth time integration schemes for a semi‐Lagrangian model employing the second‐derivative form of the horizontal momentum equations , 1996 .

[16]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[17]  Stephen J. Thomas,et al.  The Cost-Effectiveness of Semi-Lagrangian Advection , 1996 .

[18]  Jean Côté,et al.  Cascade interpolation for semi‐Lagrangian advection over the sphere , 1999 .

[19]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[20]  Jeffrey S. Scroggs,et al.  A global nonhydrostatic semi-Lagrangian atmospheric model without orography , 1995 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Charles A. Doswell,et al.  A Kinematic Analysis of Frontogenesis Associated with a Nondivergent Vortex , 1984 .

[23]  Lance M. Leslie,et al.  An Efficient Interpolation Procedure for High-Order Three-Dimensional Semi-Lagrangian Models , 1991 .

[24]  John K. Dukowicz,et al.  Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .

[25]  J. P. René Laprise,et al.  A Class of Semi-Lagrangian Integrated-Mass (SLM) Numerical Transport Algorithms , 1995 .

[26]  Ramachandran D. Nair,et al.  The Mass-Conservative Cell-Integrated Semi-Lagrangian Advection Scheme on the Sphere , 2002 .

[27]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[28]  J. McGregor,et al.  Economical Determination of Departure Points for Semi-Lagrangian Models , 1993 .

[29]  L. Leslie,et al.  Three-Dimensional Mass-Conserving Semi-Lagrangian Scheme Employing Forward Trajectories , 1995 .

[30]  P. Rasch,et al.  Two-dimensional semi-Lagrangian trans-port with shape-preserving interpolation , 1989 .

[31]  Clive Temperton,et al.  A two‐time‐level semi‐Lagrangian global spectral model , 2001 .

[32]  Jeffrey S. Scroggs,et al.  A conservative semi‐Lagrangian method for multidimensional fluid dynamics applications , 1995 .

[33]  David L. Williamson,et al.  A comparison of semi-lagrangian and Eulerian polar climate simulations , 1998 .

[34]  L. Leslie,et al.  An Efficient Semi-Lagrangian Scheme Using Third-Order Semi-Implicit Time Integration and Forward Trajectories , 1994 .

[35]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[36]  John K. Dukowicz,et al.  Incremental Remapping as a Transport/Advection Algorithm , 2000 .

[37]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation , 1998 .

[38]  M. Falcone,et al.  Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .

[39]  Stephen J. Thomas,et al.  Parallel algorithms for semi-lagrangian advection , 1997, International Journal for Numerical Methods in Fluids.

[40]  J. Côté,et al.  Monotonic cascade interpolation for semi‐lagrangian advection , 1999 .

[41]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .