Flow on Sweeping Networks

We introduce a cellular automaton model coupled with a transport equation for flows on graphs. The direction of the flow is described by a switching process where the switching probability dynamically changes according to the value of the transported quantity in the neighboring cells. A motivation is pedestrian dynamics during panic situations in a small corridor where the propagation of people in a part of the corridor can be either left- or right-going. Under the assumptions of propagation of chaos and mean-field limit, we derive a master equation and the corresponding mean-field kinetic and macroscopic models. Steady-states are computed and analyzed and exhibit the possibility of multiple metastable states and hysteresis.

[1]  Pierre Degond,et al.  A Model for the Formation and Evolution of Traffic Jams , 2008 .

[2]  Andreas Schadschneider,et al.  Extended Floor Field CA Model for Evacuation Dynamics , 2004, IEICE Trans. Inf. Syst..

[3]  A. Sznitman Topics in propagation of chaos , 1991 .

[4]  D. Armbruster,et al.  Kinetic and fluid models for supply chains supporting policy attributes , 2007 .

[5]  A. Chertock,et al.  PEDESTRIAN FLOW MODELS WITH SLOWDOWN INTERACTIONS , 2012, 1209.5947.

[6]  Dirk Helbing,et al.  Self-Organizing Pedestrian Movement , 2001 .

[7]  Christian Schmeiser,et al.  Convergence of a Stochastic Particle Approximation for Measure Solutions of the 2D Keller-Segel System , 2011 .

[8]  M. R. C. McDowell,et al.  Kinetic Theory of Vehicular Traffic , 1972 .

[9]  D. Gazis,et al.  Nonlinear Follow-the-Leader Models of Traffic Flow , 1961 .

[10]  S. Mischler,et al.  Quantitative uniform in time chaos propagation for Boltzmann collision processes , 2010, 1001.2994.

[11]  P. Degond Macroscopic limits of the Boltzmann equation: a review , 2004 .

[12]  Serge P. Hoogendoorn,et al.  Gas-Kinetic Modeling and Simulation of Pedestrian Flows , 2000 .

[13]  Carlos F. Daganzo,et al.  A theory of supply chains , 2003 .

[14]  S. Mischler,et al.  A new approach to quantitative propagation of chaos for drift, diffusion and jump processes , 2011, 1101.4727.

[15]  Dirk Helbing A Fluid-Dynamic Model for the Movement of Pedestrians , 1992, Complex Syst..

[16]  Alexandre M. Bayen,et al.  Convex Formulations of Data Assimilation Problems for a Class of Hamilton-Jacobi Equations , 2011, SIAM J. Control. Optim..

[17]  Michel Rascle,et al.  Resurrection of "Second Order" Models of Traffic Flow , 2000, SIAM J. Appl. Math..

[18]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[19]  A. Schadschneider,et al.  Simulation of pedestrian dynamics using a two dimensional cellular automaton , 2001 .

[20]  Michael Schreckenberg,et al.  A cellular automaton model for freeway traffic , 1992 .

[21]  Radek Erban,et al.  From Individual to Collective Behavior in Bacterial Chemotaxis , 2004, SIAM J. Appl. Math..

[22]  M. Kac Foundations of Kinetic Theory , 1956 .

[23]  M. Burger,et al.  Continuous limit of a crowd motion and herding model: Analysis and numerical simulations , 2011 .

[24]  O. Lanford,et al.  On a derivation of the Boltzmann equation , 1983 .

[25]  Michael Schreckenberg,et al.  Two lane traffic simulations using cellular automata , 1995, cond-mat/9512119.

[26]  Victor J. Blue,et al.  Cellular automata microsimulation for modeling bi-directional pedestrian walkways , 2001 .

[27]  Harold J Payne,et al.  MODELS OF FREEWAY TRAFFIC AND CONTROL. , 1971 .

[28]  J. Banks,et al.  Discrete-Event System Simulation , 1995 .

[29]  R. LeVeque Numerical methods for conservation laws , 1990 .

[30]  Christian A. Ringhofer,et al.  Stochastic Dynamics of Long Supply Chains with Random Breakdowns , 2007, SIAM J. Appl. Math..

[31]  Andreas Schadschneider,et al.  Empirical results for pedestrian dynamics and their implications for modeling , 2011, Networks Heterog. Media.

[32]  Axel Klar,et al.  Derivation of Continuum Traffic Flow Models from Microscopic Follow-the-Leader Models , 2002, SIAM J. Appl. Math..

[33]  M J Lighthill,et al.  ON KINEMATIC WAVES.. , 1955 .

[34]  A. Schadschneider,et al.  Metastable states in cellular automata for traffic flow , 1998, cond-mat/9804170.

[35]  D. Helbing,et al.  Self-organizing pedestrian movement; Environment and Planning B , 2001 .

[36]  Dirk Helbing,et al.  How simple rules determine pedestrian behavior and crowd disasters , 2011, Proceedings of the National Academy of Sciences.

[37]  P. Degond,et al.  A Hierarchy of Heuristic-Based Models of Crowd Dynamics , 2013, 1304.1927.

[38]  Jian-Guo Liu,et al.  Macroscopic Limits and Phase Transition in a System of Self-propelled Particles , 2011, Journal of Nonlinear Science.

[39]  Pierre Degond,et al.  Kinetic hierarchy and propagation of chaos in biological swarm models , 2013 .

[40]  Cécile Appert-Rolland,et al.  Realistic following behaviors for crowd simulation , 2012, Comput. Graph. Forum.

[41]  Cécile Appert-Rolland,et al.  Two-way multi-lane traffic model for pedestrians in corridors , 2011, Networks Heterog. Media.

[42]  Pierre Degond,et al.  Kinetic limits for pair-interaction driven master equations and biological swarm models , 2011, 1109.4538.

[43]  Carlo Cercignani,et al.  The Derivation of the Boltzmann Equation , 1997 .

[44]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[45]  Alexandros Sopasakis,et al.  Stochastic Modeling and Simulation of Traffic Flow: Asymmetric Single Exclusion Process with Arrhenius look-ahead dynamics , 2006, SIAM J. Appl. Math..

[46]  Alexandros Sopasakis,et al.  Formal Asymptotic Models of Vehicular Traffic. Model Closures , 2003, SIAM J. Appl. Math..