Old molecules, new concepts: [Ru(bpy)(3)](2+) as a molecular encoder-decoder.

[1]  Giacomo Bergamini,et al.  Photochemistry and Photophysics of Coordination Compounds: Ruthenium , 2007 .

[2]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[3]  K. Szaciłowski Digital information processing in molecular systems. , 2008, Chemical reviews.

[4]  Joakim Andréasson,et al.  Molecular all-photonic encoder-decoder. , 2008, Journal of the American Chemical Society.

[5]  Bernadine O. F. McKinney,et al.  Molecular computational elements encode large populations of small objects , 2006, Nature materials.

[6]  J. Andréasson,et al.  Molecular 2:1 digital multiplexer. , 2007, Angewandte Chemie.

[7]  Allen J. Bard,et al.  Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride , 1972 .

[8]  L. Yellowlees,et al.  Spectro-electrochemical studies on tris-bipyridyl ruthenium complexes; ultra-violet, visible, and near-infrared spectra of the series [Ru(bipyridyl)3]2+/1+/0/1– , 1981 .

[9]  M. Amelia,et al.  A simple unimolecular multiplexer/demultiplexer. , 2008, Angewandte Chemie.

[10]  A. Credi,et al.  Processing energy and signals by molecular and supramolecular systems. , 2008, Chemistry.

[11]  Jean-Marie Lehn,et al.  From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. , 2007, Chemical Society reviews.

[12]  Margherita Venturi,et al.  A chemical system that mimics decoding operations. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  C. McCoy,et al.  A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.

[14]  A. Aviram Molecules for memory, logic and amplification , 1988 .

[15]  He Tian,et al.  Recent progress on switchable rotaxanes. , 2006, Chemical Society reviews.

[16]  Gareth W. V. Cave,et al.  Molecular Borromean Rings , 2004, Science.

[17]  Uwe Pischel,et al.  Chemische Strategien für den Aufbau molekularer Logikelemente zur Addition und Subtraktion , 2007 .

[18]  A. Shanzer,et al.  A molecular full-adder and full-subtractor, an additional step toward a moleculator. , 2006, Journal of the American Chemical Society.

[19]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[20]  Françisco M Raymo,et al.  Optical processing with photochromic switches. , 2006, Chemistry.

[21]  Uwe Pischel,et al.  Chemical approaches to molecular logic elements for addition and subtraction. , 2007, Angewandte Chemie.

[22]  Galina Melman,et al.  A molecular keypad lock: a photochemical device capable of authorizing password entries. , 2007, Journal of the American Chemical Society.

[23]  H. Tian,et al.  A fluorophore capable of crossword puzzles and logic memory. , 2007, Angewandte Chemie.

[24]  Milko E van der Boom,et al.  Redox-active monolayers as a versatile platform for integrating boolean logic gates. , 2008, Angewandte Chemie.

[25]  A. Credi Molecules that make decisions. , 2007, Angewandte Chemie.

[26]  Joakim Andréasson,et al.  All-photonic molecular half-adder. , 2006, Journal of the American Chemical Society.

[27]  Joakim Andréasson,et al.  An all-photonic molecular keypad lock. , 2009, Chemistry.

[28]  Alberto Credi,et al.  Moleküle, die Entscheidungen treffen , 2007 .

[29]  Kuppuswamy Kalyanasundaram,et al.  Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues , 1982 .

[30]  A. P. de Silva,et al.  Molecular logic and computing. , 2007, Nature nanotechnology.

[31]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.