A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids
暂无分享,去创建一个
William C. Skamarock | Joseph B. Klemp | John Thuburn | T. D. Ringler | T. Ringler | W. Skamarock | J. Klemp | J. Thuburn
[1] J. McWilliams. A note on a consistent quasigeostrophic model in a multiply connected domain , 1977 .
[2] Slobodan Nickovic,et al. Geostrophic Adjustment on Hexagonal Grids , 2002 .
[3] T. Ringler,et al. Analysis of Discrete Shallow-Water Models on Geodesic Delaunay Grids with C-Type Staggering , 2005 .
[4] B. Hoskins,et al. On the use and significance of isentropic potential vorticity maps , 2007 .
[5] Claude Basdevant,et al. Parameterization of Subgrid Scale Barotropic and Baroclinic Eddies in Quasi-geostrophic Models: Anticipated Potential Vorticity Method , 1985 .
[6] B. Perot. Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .
[7] David A. Ham,et al. The symmetry and stability of unstructured mesh C-grid shallow water models under the influence of Coriolis , 2007 .
[8] Guus S. Stelling,et al. On the accurate and stable reconstruction of tangential velocities in C-grid ocean models , 2009 .
[9] Chris Hill,et al. Implementation of an Atmosphere-Ocean General Circulation Model on the Expanded Spherical Cube , 2004 .
[10] William C. Skamarock,et al. Numerical representation of geostrophic modes on arbitrarily structured C-grids , 2009, J. Comput. Phys..
[11] D. Olbers,et al. Potential Vorticity Constraints on the Dynamics and Hydrography of the Southern Ocean , 1993 .
[12] J. S. A. Green,et al. Comments On ‘On the Use and Significance of Isentropic Potential Vorticity Maps’ By B. J. Hoskins, M. E. Mcintyre and A. W. Robertson (October 1985, 111, 877‐946) , 1987 .
[13] Paul N. Swarztrauber. Spectral Transform Methods for Solving the Shallow-Water Equations on the Sphere , 1996 .
[14] R. Sadourny. The Dynamics of Finite-Difference Models of the Shallow-Water Equations , 1975 .
[15] J. Thuburn. Multidimensional Flux-Limited Advection Schemes , 1996 .
[16] Akio Arakawa,et al. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .
[17] Shian-Jiann Lin,et al. An explicit flux‐form semi‐lagrangian shallow‐water model on the sphere , 1997 .
[18] John Thuburn,et al. Some conservation issues for the dynamical cores of NWP and climate models , 2008, J. Comput. Phys..
[19] J. Côté,et al. A Lagrange multiplier approach for the metric terms of semi‐Lagrangian models on the sphere , 1988 .
[20] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[21] Hirofumi Tomita,et al. Shallow water model on a modified icosahedral geodesic grid by using spring dynamics , 2001 .
[22] R. Heikes,et al. Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid , 1995 .
[23] A. Arakawa,et al. Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations , 1990 .
[24] William H. Lipscomb,et al. An Incremental Remapping Transport Scheme on a Spherical Geodesic Grid , 2005 .
[25] R. Nicolaides. Direct discretization of planar div-curl problems , 1992 .
[26] Qiang Du,et al. Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..
[27] William C. Skamarock,et al. A Linear Analysis of the NCAR CCSM Finite-Volume Dynamical Core , 2008 .
[28] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[29] J. Thuburn. A PV-Based Shallow-Water Model on a Hexagonal-Icosahedral Grid , 1997 .
[30] Todd D. Ringler,et al. Modeling the Atmospheric General Circulation Using a Spherical Geodesic Grid: A New Class of Dynamical Cores , 2000 .
[31] P. Swarztrauber,et al. A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .
[32] W. Richard Peltier,et al. A robust unstructured grid discretization for 3-dimensional hydrostatic flows in spherical geometry: A new numerical structure for ocean general circulation modeling , 2006, J. Comput. Phys..
[33] D. Randall,et al. A Potential Enstrophy and Energy Conserving Numerical Scheme for Solution of the Shallow-Water Equations on a Geodesic Grid , 2002 .
[34] M. Gunzburger,et al. Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere ☆ , 2003 .
[35] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[36] F. Bretherton. Critical layer instability in baroclinic flows , 1966 .
[37] A. Arakawa,et al. A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations , 1981 .