A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids

A numerical scheme applicable to arbitrarily-structured C-grids is presented for the nonlinear shallow-water equations. By discretizing the vector-invariant form of the momentum equation, the relationship between the nonlinear Coriolis force and the potential vorticity flux can be used to guarantee that mass, velocity and potential vorticity evolve in a consistent and compatible manner. Underpinning the consistency and compatibility of the discrete system is the construction of an auxiliary thickness equation that is staggered from the primary thickness equation and collocated with the vorticity field. The numerical scheme also exhibits conservation of total energy to within time-truncation error. Simulations of the standard shallow-water test cases confirm the analysis and show convergence rates between 1st- and 2nd-order accuracy when discretizing the system with quasi-uniform spherical Voronoi diagrams. The numerical method is applicable to a wide class of meshes, including latitude-longitude grids, Voronoi diagrams, Delaunay triangulations and conformally-mapped cubed-sphere meshes.

[1]  J. McWilliams A note on a consistent quasigeostrophic model in a multiply connected domain , 1977 .

[2]  Slobodan Nickovic,et al.  Geostrophic Adjustment on Hexagonal Grids , 2002 .

[3]  T. Ringler,et al.  Analysis of Discrete Shallow-Water Models on Geodesic Delaunay Grids with C-Type Staggering , 2005 .

[4]  B. Hoskins,et al.  On the use and significance of isentropic potential vorticity maps , 2007 .

[5]  Claude Basdevant,et al.  Parameterization of Subgrid Scale Barotropic and Baroclinic Eddies in Quasi-geostrophic Models: Anticipated Potential Vorticity Method , 1985 .

[6]  B. Perot Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .

[7]  David A. Ham,et al.  The symmetry and stability of unstructured mesh C-grid shallow water models under the influence of Coriolis , 2007 .

[8]  Guus S. Stelling,et al.  On the accurate and stable reconstruction of tangential velocities in C-grid ocean models , 2009 .

[9]  Chris Hill,et al.  Implementation of an Atmosphere-Ocean General Circulation Model on the Expanded Spherical Cube , 2004 .

[10]  William C. Skamarock,et al.  Numerical representation of geostrophic modes on arbitrarily structured C-grids , 2009, J. Comput. Phys..

[11]  D. Olbers,et al.  Potential Vorticity Constraints on the Dynamics and Hydrography of the Southern Ocean , 1993 .

[12]  J. S. A. Green,et al.  Comments On ‘On the Use and Significance of Isentropic Potential Vorticity Maps’ By B. J. Hoskins, M. E. Mcintyre and A. W. Robertson (October 1985, 111, 877‐946) , 1987 .

[13]  Paul N. Swarztrauber Spectral Transform Methods for Solving the Shallow-Water Equations on the Sphere , 1996 .

[14]  R. Sadourny The Dynamics of Finite-Difference Models of the Shallow-Water Equations , 1975 .

[15]  J. Thuburn Multidimensional Flux-Limited Advection Schemes , 1996 .

[16]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[17]  Shian-Jiann Lin,et al.  An explicit flux‐form semi‐lagrangian shallow‐water model on the sphere , 1997 .

[18]  John Thuburn,et al.  Some conservation issues for the dynamical cores of NWP and climate models , 2008, J. Comput. Phys..

[19]  J. Côté,et al.  A Lagrange multiplier approach for the metric terms of semi‐Lagrangian models on the sphere , 1988 .

[20]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[21]  Hirofumi Tomita,et al.  Shallow water model on a modified icosahedral geodesic grid by using spring dynamics , 2001 .

[22]  R. Heikes,et al.  Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid , 1995 .

[23]  A. Arakawa,et al.  Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations , 1990 .

[24]  William H. Lipscomb,et al.  An Incremental Remapping Transport Scheme on a Spherical Geodesic Grid , 2005 .

[25]  R. Nicolaides Direct discretization of planar div-curl problems , 1992 .

[26]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[27]  William C. Skamarock,et al.  A Linear Analysis of the NCAR CCSM Finite-Volume Dynamical Core , 2008 .

[28]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[29]  J. Thuburn A PV-Based Shallow-Water Model on a Hexagonal-Icosahedral Grid , 1997 .

[30]  Todd D. Ringler,et al.  Modeling the Atmospheric General Circulation Using a Spherical Geodesic Grid: A New Class of Dynamical Cores , 2000 .

[31]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[32]  W. Richard Peltier,et al.  A robust unstructured grid discretization for 3-dimensional hydrostatic flows in spherical geometry: A new numerical structure for ocean general circulation modeling , 2006, J. Comput. Phys..

[33]  D. Randall,et al.  A Potential Enstrophy and Energy Conserving Numerical Scheme for Solution of the Shallow-Water Equations on a Geodesic Grid , 2002 .

[34]  M. Gunzburger,et al.  Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere ☆ , 2003 .

[35]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[36]  F. Bretherton Critical layer instability in baroclinic flows , 1966 .

[37]  A. Arakawa,et al.  A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations , 1981 .