Analysis Problems for Sequential Dynamical Systems and Communicating State Machines

Informally, a sequential dynamical system (SDS) consists of an undirected graph where each node v is associated with a state sv and a transition function fv. Given the state value sv and those of the neighbors of v, the function fv computes the next value of sv. Theno de transition functions are evaluated according to a specified total order. Such a computing device is a mathematical abstraction of a simulation system. We address the complexity of some state reachability problems for SDSs. Our main result is a dichotomy between classes of SDSs for which the state reachability problems arecomp utationally intractablean d those for which the problems are efficiently solvable. These results also allow us to obtain stronger lower bounds on the complexity of reachability problems for cellular automata and communicating state machines.

[1]  Christian M. Reidys,et al.  Discrete, sequential dynamical systems , 2001, Discret. Math..

[2]  Eric Goles Ch.,et al.  Decreasing energy functions as a tool for studying threshold networks , 1985, Discret. Appl. Math..

[3]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[4]  Klaus Sutner,et al.  On the Computational Complexity of Finite Cellular Automata , 1995, J. Comput. Syst. Sci..

[5]  John N. Tsitsiklis,et al.  On the predictability of coupled automata: an allegory about chaos , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[6]  Alexander Moshe Rabinovich,et al.  Checking Equivalences Between Concurrent Systems of Finite Agents (Extended Abstract) , 1992, ICALP.

[7]  Harry B. Hunt,et al.  Predecessor and Permutation Existence Problems for Sequential Dynamical Systems , 2003, DMCS.

[8]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[9]  H. Gutowitz Cellular automata: theory and experiment : proceedings of a workshop , 1991 .

[10]  Yuval Rabani,et al.  Simulating quadratic dynamical systems is PSPACE-complete (preliminary version) , 1994, STOC '94.

[11]  Klaus Sutner,et al.  De Bruijn Graphs and Linear Cellular Automata , 1991, Complex Syst..

[12]  Frederic Green,et al.  NP-Complete Problems in Cellular Automata , 1987, Complex Syst..

[13]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[14]  Christian M. Reidys,et al.  Elements of a theory of simulation II: sequential dynamical systems , 2000, Appl. Math. Comput..

[15]  Sampath Kannan,et al.  Communicating Hierarchical State Machines , 1999, ICALP.

[16]  Harry B. Hunt,et al.  On the time and tape complexity of languages I , 1973, STOC.

[17]  Christian M. Reidys,et al.  Sequential dynamical systems and applications to simulations , 2000, Proceedings 33rd Annual Simulation Symposium (SS 2000).

[18]  Harry B. Hunt,et al.  The Complexity of Processing Hierarchical Specifications , 1993, SIAM J. Comput..

[19]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[20]  Cristopher Moore,et al.  Generalized shifts: unpredictability and undecidability in dynamical systems , 1991 .

[21]  Christian M. Reidys,et al.  On Acyclic Orientations and Sequential Dynamical Systems , 2001, Adv. Appl. Math..

[22]  Sandeep K. Shukla,et al.  On the Complexity of Relational Problems for Finite State Processes (Extended Abstract) , 1996, ICALP.

[23]  Klaus Sutner Classifying circular cellular automata , 1991 .

[24]  Christian M. Reidys,et al.  Elements of a theory of simulation III: equivalence of SDS , 2001, Appl. Math. Comput..

[25]  Christian M. Reidys,et al.  Elements of a theory of computer simulation I: Sequential CA over random graphs , 1999, Appl. Math. Comput..

[26]  Harry B. Hunt,et al.  Gardens of Eden and Fixed Points in Sequential Dynamical Systems , 2001, DM-CCG.

[27]  Joseph W. Goodman,et al.  A generalized convergence theorem for neural networks , 1988, IEEE Trans. Inf. Theory.