Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics

The energy transfer from Ce<sup>3+</sup> to Yb<sup>3+</sup> in Ce<sup>3+</sup>-Yb<sup>3+</sup>:YA G (Y <inf>3</inf>Al<inf>5</inf>O<inf>12</inf>) ceramics was observed. While the energy transfer efficiency estimated from the lifetime was about 48%, the observed quantum yield of Yb<sup>3+</sup> emission was about 11% upon Ce<sup>3+</sup> excitation in the sample.

[1]  S. Ye,et al.  Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals , 2008 .

[2]  Martin Nikl,et al.  Charge transfer luminescence in Yb3+-containing compounds , 2004 .

[3]  Wieslaw Strek,et al.  Power dependence of luminescence of Tb3+ -doped KYb(WO4)2 crystal , 2001 .

[4]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[5]  J. Deluca,et al.  Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light , 1974 .

[6]  N. Guerassimova,et al.  X-ray excited charge transfer luminescence of ytterbium-containing aluminium garnets , 2001 .

[7]  N. Guerassimova,et al.  Temperature dependence of the charge transfer and f–f luminescence of Yb3+ in garnets and YAP , 2005 .

[8]  G. Dong,et al.  Cooperative downconversion in Yb3+/-RE3+ (RE=Tm or Pr) codoped lanthanum borogermanate glasses. , 2008, Optics letters.

[9]  A. Meijerink,et al.  Visible quantum cutting via downconversion in LiGdF4: Er3+, Tb3+ upon Er3+ 4f11 → 4f105d excitation , 2000 .

[10]  Andries Meijerink,et al.  Vacuum-ultraviolet spectroscopy and quantum cutting for Gd 3 + in LiYF 4 , 1997 .

[11]  W. V. Sark,et al.  Enhancing solar cell efficiency by using spectral converters , 2005 .

[12]  Zhonghong Jiang,et al.  Cooperative downconversion in GdAl3(BO3)(4): RE3+,Yb3+ (RE=Pr, Tb, and Tm) , 2007 .

[13]  D. L. Dexter Possibility of Luminescent Quantum Yields Greater than Unity , 1957 .

[14]  A. Bril',et al.  Two photon luminescence with ultraviolet excitation of trivalent praseodymium , 1974 .

[15]  A. Meijerink,et al.  Visible quantum cutting in LiGdF4:Eu3+ through downconversion , 1999, Science.

[16]  R. Muenchausen,et al.  Temperature-dependent luminescence of cerium-doped ytterbium oxyorthosilicate , 1998 .

[17]  Andries Meijerink,et al.  Charge transfer luminescence of Yb3 , 2000 .

[18]  T. Vlugt,et al.  Quantum cutting by cooperative energy transfer in Yb x Y 1-x P O 4 : Tb 3+ , 2005 .

[19]  Takashi Mukai,et al.  Phosphor-Conversion White Light Emitting Diode Using InGaN Near-Ultraviolet Chip , 2002 .

[20]  C. Dujardin,et al.  Fluorescence of Ce3+ in LiREF4 (RE Gd, Yb) , 1995 .

[21]  M. Green,et al.  Improving solar cell efficiencies by down-conversion of high-energy photons , 2002 .

[22]  Junlin Yuan,et al.  Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor , 2008 .

[23]  A. Sakamoto,et al.  Luminescence Characteristics of YAG Glass–Ceramic Phosphor for White LED , 2008, IEEE Journal of Selected Topics in Quantum Electronics.