Epigenomic Profiling of Human CD4+ T Cells Supports a Linear Differentiation Model and Highlights Molecular Regulators of Memory Development.

The impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA+ CD4+ Tmem cells from blood and CD69+ Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation. Furthermore, distinct gradually changing signatures in the epigenome and the transcriptome supported a linear model of memory development in circulating T cells, while tissue-resident BM-Tmem branched off with a unique epigenetic profile. Integrative analyses identified candidate master regulators of Tmem cell differentiation, including the transcription factor FOXP1. This study highlights the importance of epigenomic changes for Tmem cell biology and demonstrates the value of epigenetic data for the identification of lineage regulators.

Ho-Ryun Chung | Thomas Lengauer | Florian Schmidt | Marcel H Schulz | Marcel H. Schulz | Thomas Manke | Jörn Walter | Philip Rosenstiel | Barbara Hutter | Benedikt Brors | Thomas Ulas | Laura Arrigoni | Ute Hoffmann | Nikolaus Rajewsky | Lars Feuerbach | Na Li | Peter Ebert | Azim Dehghani Amirabad | Jürgen Eils | Gilles Gasparoni | Anupam Sinha | Karl Nordström | Andreas S. Richter | Jürgen Ruland | Lina Sieverling | Hyun-Dong Chang | Petar Glažar | Joachim L Schultze | Kevin Bassler | Georgi Wassilew | Fabian Müller | Alf Hamann | Sebastian Fröhler | Gideon Zipprich | Pawel Durek | Fatemeh Behjati Ardakani | Thomas Lengauer | Petar Glažar | N. Rajewsky | Na Li | B. Hutter | P. Rosenstiel | B. Brors | J. Walter | Ho-Ryun Chung | Hyun-Dong Chang | G. Wassilew | Jun Dong | K. Nordström | J. Ruland | P. Durek | F. Klironomos | A. Radbruch | F. Müller | T. Ulas | J. Schultze | Florian Schmidt | Nina Gasparoni | G. Gasparoni | J. Polansky | Peter Ebert | A. Sinha | Jieyi Xiong | Gideon Zipprich | B. Felder | J. Eils | Wei Chen | A. Hamann | U. Syrbe | S. Kinkley | K. Baßler | L. Arrigoni | T. Manke | S. Frischbutter | B. Sawitzki | L. Feuerbach | L. Sieverling | Charles D Imbusch | C. Kressler | Abdulrahman Salhab | Xinyi Yang | S. Schlickeiser | Filippos Klironomos | Andreas Radbruch | Sarah Kinkley | Wei Chen | Uta Syrbe | Abdulrahman Salhab | Christopher Kressler | Melanie de Almeida | Jieyi Xiong | Xinyi Yang | Oliver Gorka | Stefan Frischbutter | Stephan Schlickeiser | Carla Cendon | Bärbel Felder | Nina Gasparoni | Yvonne Tauchmann | Simon Reinke | Andreas S Richter | Ulrich Kalus | Jun Dong | Birgit Sawitzki | Julia K Polansky | U. Hoffmann | Charles D. Imbusch | U. Kalus | Carla Cendón | Sebastian Fröhler | O. Gorka | Melanie de Almeida | C. Imbusch | Yvonne Tauchmann | S. Reinke | A. Amirabad | K. Bassler | Laura Arrigoni

[1]  Hamza Hanieh Toward Understanding the Role of Aryl Hydrocarbon Receptor in the Immune System: Current Progress and Future Trends , 2014, BioMed research international.

[2]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[3]  Helene Kretzmer,et al.  metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data , 2016, Genome research.

[4]  Debra L. Fulton,et al.  TFCat: the curated catalog of mouse and human transcription factors , 2009, Genome Biology.

[5]  A. D. de Craen,et al.  Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. , 2011, The Journal of general virology.

[6]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[7]  Zachary D. Smith,et al.  Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. , 2013, Cell stem cell.

[8]  P. Nietert,et al.  Reducing FLI1 Levels in the MRL/lpr Lupus Mouse Model Impacts T Cell Function by Modulating Glycosphingolipid Metabolism , 2013, PloS one.

[9]  M. D. de Andrés,et al.  Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate , 2015, Arthritis Research & Therapy.

[10]  Andreas S. Richter,et al.  Standardizing chromatin research: a simple and universal method for ChIP-seq , 2015, Nucleic acids research.

[11]  R. Ahmed,et al.  Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function , 2013, The Journal of Immunology.

[12]  N. Riddell,et al.  Properties of end-stage human T cells defined by CD45RA re-expression. , 2012, Current opinion in immunology.

[13]  Michael J. Bevan,et al.  The precursors of memory: models and controversies , 2009, Nature Reviews Immunology.

[14]  W. Heath,et al.  Distinct resident and recirculating memory T cell subsets in non-lymphoid tissues. , 2013, Current opinion in immunology.

[15]  Lee E. Edsall,et al.  Human DNA methylomes at base resolution show widespread epigenomic differences , 2009, Nature.

[16]  Ho-Ryun Chung,et al.  reChIP-seq reveals widespread bivalency of H3K4me3 and H3K27me3 in CD4+ memory T cells , 2016, Nature Communications.

[17]  Z. Fang,et al.  Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory , 2014, Proceedings of the National Academy of Sciences.

[18]  K. Kretschmer,et al.  DNA methylation controls Foxp3 gene expression , 2008, European journal of immunology.

[19]  M. Rehli,et al.  Functional Analysis of Promoter CPG-Methylation using a CpG-Free Luciferase Reporter Vector , 2006, Epigenetics.

[20]  D. Karolchik,et al.  The UCSC Genome Browser database: 2016 update , 2015, bioRxiv.

[21]  Zhenghui Liu,et al.  Cutting Edge: Foxp1 Controls Naive CD8+ T Cell Quiescence by Simultaneously Repressing Key Pathways in Cellular Metabolism and Cell Cycle Progression , 2016, The Journal of Immunology.

[22]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[23]  F. Sallusto,et al.  Two subsets of memory T lymphocytes with distinct homing potentials and effector functions , 1999, Nature.

[24]  Susan M. Kaech,et al.  Transcriptional control of effector and memory CD8+ T cell differentiation , 2012, Nature Reviews Immunology.

[25]  T. Speed,et al.  Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8(+) T cell differentiation. , 2014, Immunity.

[26]  B. Stockinger,et al.  The aryl hydrocarbon receptor in immunity. , 2009, Trends in immunology.

[27]  T. Speed,et al.  Distinct Epigenetic Signatures Delineate Transcriptional Programs during Virus-Specific CD8 T Cell Differentiation , 2014 .

[28]  Anton J. Enright,et al.  Network visualization and analysis of gene expression data using BioLayout Express3D , 2009, Nature Protocols.

[29]  Alf Hamann,et al.  Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? , 2009, Nature Reviews Immunology.

[30]  Thomas Lengauer,et al.  Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction , 2016, bioRxiv.

[31]  Robert J. Schmitz,et al.  MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing , 2015, Nature Protocols.

[32]  John T. Chang,et al.  Asymmetric Cell Division in T Lymphocyte Fate Diversification. , 2015, Trends in immunology.

[33]  Petar Glažar,et al.  Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. , 2015, Molecular cell.

[34]  Traver Hart,et al.  Defining CD4 T Cell Memory by the Epigenetic Landscape of CpG DNA Methylation , 2015, The Journal of Immunology.

[35]  Stefan Wallner,et al.  Epigenetic dynamics of monocyte-to-macrophage differentiation , 2016, Epigenetics & Chromatin.

[36]  Christian Stemberger,et al.  Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8(+) central memory T cells. , 2014, Immunity.

[37]  D. Aran,et al.  Replication timing-related and gene body-specific methylation of active human genes. , 2011, Human molecular genetics.

[38]  Zachary D. Smith,et al.  Gel-free multiplexed reduced representation bisulfite sequencing for large-scale DNA methylation profiling , 2012, Genome Biology.

[39]  Fatima Al-Shahrour,et al.  Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. , 2010, Genome research.

[40]  R. Ahmed,et al.  Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. , 2011, Immunity.

[41]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[42]  Thomas Höfer,et al.  CD8+ T cell diversification by asymmetric cell division , 2015, Nature Immunology.

[43]  Sebastian D. Mackowiak,et al.  miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades , 2011, Nucleic acids research.

[44]  J. Kocher,et al.  CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model , 2013, Nucleic acids research.

[45]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[46]  F. Marincola,et al.  Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape , 2015, Cellular and Molecular Immunology.

[47]  M. Hattori,et al.  Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells , 2013, The Journal of Immunology.

[48]  Ho-Ryun Chung,et al.  Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome , 2015, Genome Biology.

[49]  A. Iwasaki,et al.  Tissue‐resident memory T cells , 2013, Immunological reviews.

[50]  Manolis Kellis,et al.  PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions , 2011, Bioinform..

[51]  M. Sykes,et al.  Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. , 2013, Immunity.

[52]  Ronald P. Schuyler,et al.  Whole-genome fingerprint of the DNA methylome during human B cell differentiation , 2015, Nature Genetics.

[53]  W. M. Weaver,et al.  A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. , 2001, Immunity.

[54]  Andreas Radbruch,et al.  Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. , 2009, Immunity.

[55]  Joost B. Beltman,et al.  Heterogeneous Differentiation Patterns of Individual CD8+ T Cells , 2013, Science.

[56]  C. Meisel,et al.  Elevation of CD4+ Differentiated Memory T Cells Is Associated With Acute Cellular and Antibody-Mediated Rejection After Liver Transplantation , 2013, Transplantation.

[57]  Stein Aerts,et al.  iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections , 2014, PLoS Comput. Biol..

[58]  Michael B. Stadler,et al.  Identification of active regulatory regions from DNA methylation data , 2013, Nucleic acids research.

[59]  L. Harrington,et al.  Memory CD4 T cells emerge from effector T-cell progenitors , 2008, Nature.

[60]  Brian J. Stevenson,et al.  Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. , 2012, Genome research.

[61]  Haikun Wang,et al.  Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells , 2011, Nature Immunology.

[62]  G. Gilkeson,et al.  A Critical Role of the Transcription Factor Fli‐1 in Murine Lupus Development by Regulation of Interleukin‐6 Expression , 2014, Arthritis & rheumatology.