Mushroom Bodies Are Required for Learned Visual Navigation, but Not for Innate Visual Behavior, in Ants

[1]  Ajay Narendra,et al.  Vertical Lobes of the Mushroom Bodies Are Essential for View-Based Navigation in Australian Myrmecia Ants , 2020, Current Biology.

[2]  Vertical Lobes of the Mushroom Bodies are Essential for View-Based Navigation in Australian Bull Ants , 2020, SSRN Electronic Journal.

[3]  J. Niven,et al.  Lateralization of short- and long-term visual memories in an insect , 2020, Proceedings of the Royal Society B.

[4]  W. Rössler,et al.  The brain of Cataglyphis ants: neuronal organization and visual projections , 2020, bioRxiv.

[5]  Paul Graham,et al.  Dynamic multimodal interactions in navigating wood ants: what do path details tell us about cue integration? , 2020, Journal of Experimental Biology.

[6]  Michael Mangan,et al.  A decentralised neural model explaining optimal integration of navigational strategies in insects , 2019, eLife.

[7]  Antoine Wystrach,et al.  Opponent processes in visual memories: A model of attraction and repulsion in navigating insects’ mushroom bodies , 2019, bioRxiv.

[8]  Wolfgang Rössler,et al.  Neuroplasticity in desert ants (Hymenoptera: Formicidae) – importance for the ontogeny of navigation , 2019 .

[9]  Thomas S. Collett,et al.  How does the insect central complex use mushroom body output for steering? , 2018, Current Biology.

[10]  Jeremy E Niven,et al.  Insights into the evolution of lateralization from the insects. , 2018, Progress in brain research.

[11]  A. Philippides,et al.  Vision for navigation: What can we learn from ants? , 2017, Arthropod structure & development.

[12]  C. Giovanni Galizia,et al.  Different Roles for Honey Bee Mushroom Bodies and Central Complex in Visual Learning of Colored Lights in an Aversive Conditioning Assay , 2017, Front. Behav. Neurosci..

[13]  Thomas S. Collett,et al.  On the Encoding of Panoramic Visual Scenes in Navigating Wood Ants , 2016, Current Biology.

[14]  Yoshinori Aso,et al.  Dopaminergic neurons write and update memories with cell-type-specific rules , 2016, eLife.

[15]  B. Webb,et al.  Neural mechanisms of insect navigation. , 2016, Current opinion in insect science.

[16]  Fei Peng,et al.  Using an Insect Mushroom Body Circuit to Encode Route Memory in Complex Natural Environments , 2016, PLoS Comput. Biol..

[17]  M. Giurfa,et al.  Neural substrate for higher-order learning in an insect: Mushroom bodies are necessary for configural discriminations , 2015, Proceedings of the National Academy of Sciences.

[18]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[19]  G. Rubin,et al.  Shared mushroom body circuits underlie visual and olfactory memories in Drosophila , 2014, eLife.

[20]  Holk Cruse,et al.  Visual navigation strategies in insects: lessons from desert ants , 2014 .

[21]  G. Robinson,et al.  Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight , 2013, Journal of Experimental Biology.

[22]  Z. Reznikova,et al.  Asymmetry in antennal contacts during trophallaxis in ants , 2012, Behavioural Brain Research.

[23]  J. Zeil Visual homing: an insect perspective , 2012, Current Opinion in Neurobiology.

[24]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[25]  R. Wehner,et al.  Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis , 2010, Developmental neurobiology.

[26]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[27]  M. Giurfa,et al.  Using local anaesthetics to block neuronal activity and map specific learning tasks to the mushroom bodies of an insect brain , 2007, The European journal of neuroscience.

[28]  R. Wehner,et al.  Age-dependent and task-related volume changes in the mushroom bodies of visually guided desert ants, Cataglyphis bicolor. , 2006, Journal of neurobiology.

[29]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[30]  S. Fahrbach Structure of the mushroom bodies of the insect brain. , 2006, Annual review of entomology.

[31]  C. Voss,et al.  Über das Formensehen der roten Waldameise (Formica rufa-Gruppe) , 1967, Zeitschrift für vergleichende Physiologie.

[32]  W. Gronenberg,et al.  Multisensory Convergence in the Mushroom Bodies of Ants and Bees , 2004, Acta biologica Hungarica.

[33]  Procaine impairs learning and memory consolidation in the honeybee , 2003, Brain Research.

[34]  W. Gronenberg,et al.  Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera) , 2002, The Journal of comparative neurology.

[35]  Li Liu,et al.  Context generalization in Drosophila visual learning requires the mushroom bodies , 1999, Nature.

[36]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Their participation in place memory , 1998, The Journal of comparative neurology.

[37]  G. Robinson,et al.  Expansion of the neuropil of the mushroom bodies in male honey bees is coincident with initiation of flight , 1997, Neuroscience Letters.

[38]  L. Hightower,et al.  Desert ants. , 1995, Science.

[39]  R. Menzel,et al.  Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. , 1994, Behavioral and neural biology.

[40]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[41]  E. Batschelet Circular statistics in biology , 1981 .

[42]  D. Vowles Interocular Transfer, Brain Lesions, and Maze Learning in the Wood Ant, Formica rufa , 1967 .