Engineering multilevel overlay graphs for shortest-path queries

An overlay graph of a given graph G = (V, E) on a subset S ⊆ V is a graph with vertex set S and edges corresponding to shortest paths in G. In particular, we consider variations of the multilevel overlay graph used in Schulz et al. [2002] to speed up shortest-path computation. In this work, we follow up and present several vertex selection criteria, along with two general strategies of applying these criteria, to determine a subset S of a graph's vertices. The main contribution is a systematic experimental study where we investigate the impact of selection criteria and strategies on multilevel overlay graphs and the resulting speed-up achieved for shortest-path computation: Depending on selection strategy and graph type, a centrality index criterion, selection based on planar separators, and vertex degree turned out to perform best.

[1]  Kurt Mehlhorn,et al.  The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.

[2]  Peter Sanders,et al.  In Transit to Constant Time Shortest-Path Queries in Road Networks , 2007, ALENEX.

[3]  Andrew V. Goldberg,et al.  Computing the shortest path: A search meets graph theory , 2005, SODA '05.

[4]  Ronald J. Gutman,et al.  Reach-Based Routing: A New Approach to Shortest Path Algorithms Optimized for Road Networks , 2004, ALENEX/ANALC.

[5]  M. V. Valkenburg Network Analysis , 1964 .

[6]  Peter Sanders,et al.  Highway Hierarchies Hasten Exact Shortest Path Queries , 2005, ESA.

[7]  Frank Schulz,et al.  Timetable information and shortest paths , 2005 .

[8]  Frank Schulz,et al.  Using Multi-Level Graphs for Timetable Information , 2001 .

[9]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[10]  Elke A. Rundensteiner,et al.  Hierarchical Encoded Path Views for Path Query Processing: An Optimal Model and Its Performance Evaluation , 1998, IEEE Trans. Knowl. Data Eng..

[11]  Paola Festa,et al.  Shortest Path Algorithms , 2006, Handbook of Optimization in Telecommunications.

[12]  Christos D. Zaroliagis,et al.  Engineering Planar Separator Algorithms , 2005, ESA.

[13]  Thomas Willhalm,et al.  Engineering shortest paths and layout algorithms for large graphs , 2005 .

[14]  Dorothea Wagner,et al.  Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse Graphs , 2003, ESA.

[15]  Peter Sanders,et al.  Highway Hierarchies Star , 2006, The Shortest Path Problem.

[16]  David E. Y. Sarna,et al.  Reach for it , 1995 .

[17]  Béla Bollobás,et al.  Random Graphs , 1985 .

[18]  Christos D. Zaroliagis,et al.  Using Multi-level Graphs for Timetable Information in Railway Systems , 2002, ALENEX.

[19]  Rolf H. Möhring,et al.  Partitioning Graphs to Speed Up Dijkstra's Algorithm , 2005, WEA.

[20]  Karsten Weihe,et al.  Dijkstra's algorithm on-line: an empirical case study from public railroad transport , 2000, JEAL.

[21]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[22]  Thomas Willhalm,et al.  Combining Speed-Up Techniques for Shortest-Path Computations , 2004, WEA.

[23]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[24]  Peter Sanders,et al.  Dynamic Highway-Node Routing , 2007, WEA.

[25]  Martin Holzer Hierarchical speed-up techniques for shortest-path algorithms , 2003 .

[26]  Sakti Pramanik,et al.  An Efficient Path Computation Model for Hierarchically Structured Topographical Road Maps , 2002, IEEE Trans. Knowl. Data Eng..

[27]  Haim Kaplan,et al.  Reach for A*: Efficient Point-to-Point Shortest Path Algorithms , 2006, ALENEX.

[28]  Frank Schulz,et al.  High-Performance Multi-Level Graphs ∗ , 2006 .