An algebraic study of non classical fullerenes
暂无分享,去创建一个
[1] Jack E. Graver. Catalog of All Fullerenes with Ten or More Symmetries , 2001, Graphs and Discovery.
[2] S. C. O'brien,et al. C60: Buckminsterfullerene , 1985, Nature.
[3] D. Manolopoulos,et al. An Atlas of Fullerenes , 1995 .
[4] M. Ghorbani,et al. Differences between Wiener and modified Wiener indices , 2014 .
[5] Ivan Gutman,et al. The Range of the Wiener Index and Its Mean Isomer Degeneracy , 1991 .
[6] Michel Deza,et al. Zigzag structure of complexes , 2004 .
[7] Mathieu Dutour Sikiric,et al. Zigzags, Railroads, and Knots in Fullerenes , 2004, J. Chem. Inf. Model..
[8] Wolfgang Linert,et al. Trees with Extremal Hyper-Wiener Index: Mathematical Basis and Chemical Applications , 1997, J. Chem. Inf. Comput. Sci..
[9] Heping Zhang,et al. An Upper Bound for the Clar Number of Fullerene Graphs , 2007 .
[11] Nina S. Schmuck. The Wiener index of a graph , 2010 .
[12] István Lukovits,et al. On the Definition of the Hyper-Wiener Index for Cycle-Containing Structures , 1995, J. Chem. Inf. Comput. Sci..
[13] H. Wiener. Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.
[14] Modjtaba Ghorbani,et al. Computing Wiener Index of C12n Fullerenes , 2017, Ars Comb..
[15] Frank Harary,et al. Graph Theory , 2016 .
[16] Ottorino Ori,et al. Topological lattice descriptors of graphene sheets with fullerene-like nanostructures , 2010 .
[17] Ottorino Ori,et al. A topological study of the structure of the C76 fullerene , 1992 .
[18] COMPUTING VERTEX PI, OMEGA AND SADHANA POLYNOMIALS OF F12 (2N+1) FULLERENES , 2010 .
[19] Michel Deza,et al. Space fullerenes: a computer search for new Frank-Kasper structures. , 2010, Acta crystallographica. Section A, Foundations of crystallography.
[20] M. Deza,et al. Space fullerenes: computer search for new Frank–Kasper structures II , 2012, Structural Chemistry.