An algebraic study of non classical fullerenes

Abstract The Wiener index is the oldest topological index based on the sum of distances between any pair of vertices in given graph. An algebraic approach for generalizing the Wiener index was proposed by Graovać and Pisanski for the first time. In this paper, we compute the modified Wiener index and then the differences between Wiener and modified Wiener indices of an infinite class of non-classical fullerenes.

[1]  Jack E. Graver Catalog of All Fullerenes with Ten or More Symmetries , 2001, Graphs and Discovery.

[2]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[3]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[4]  M. Ghorbani,et al.  Differences between Wiener and modified Wiener indices , 2014 .

[5]  Ivan Gutman,et al.  The Range of the Wiener Index and Its Mean Isomer Degeneracy , 1991 .

[6]  Michel Deza,et al.  Zigzag structure of complexes , 2004 .

[7]  Mathieu Dutour Sikiric,et al.  Zigzags, Railroads, and Knots in Fullerenes , 2004, J. Chem. Inf. Model..

[8]  Wolfgang Linert,et al.  Trees with Extremal Hyper-Wiener Index: Mathematical Basis and Chemical Applications , 1997, J. Chem. Inf. Comput. Sci..

[9]  Heping Zhang,et al.  An Upper Bound for the Clar Number of Fullerene Graphs , 2007 .

[11]  Nina S. Schmuck The Wiener index of a graph , 2010 .

[12]  István Lukovits,et al.  On the Definition of the Hyper-Wiener Index for Cycle-Containing Structures , 1995, J. Chem. Inf. Comput. Sci..

[13]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[14]  Modjtaba Ghorbani,et al.  Computing Wiener Index of C12n Fullerenes , 2017, Ars Comb..

[15]  Frank Harary,et al.  Graph Theory , 2016 .

[16]  Ottorino Ori,et al.  Topological lattice descriptors of graphene sheets with fullerene-like nanostructures , 2010 .

[17]  Ottorino Ori,et al.  A topological study of the structure of the C76 fullerene , 1992 .

[18]  COMPUTING VERTEX PI, OMEGA AND SADHANA POLYNOMIALS OF F12 (2N+1) FULLERENES , 2010 .

[19]  Michel Deza,et al.  Space fullerenes: a computer search for new Frank-Kasper structures. , 2010, Acta crystallographica. Section A, Foundations of crystallography.

[20]  M. Deza,et al.  Space fullerenes: computer search for new Frank–Kasper structures II , 2012, Structural Chemistry.