The formation of dusty cold gas filaments from galaxy cluster simulations

[1]  E. Quataert,et al.  The Fate of Asymptotic Giant Branch Winds in Massive Galaxies and the Intracluster Medium , 2019, The Astrophysical Journal.

[2]  E. Dwek,et al.  Dust Formation in AGN Winds , 2019, The Astrophysical Journal.

[3]  Y. Dubois,et al.  Dense gas formation and destruction in a simulated Perseus-like galaxy cluster with spin-driven black hole feedback , 2019, Astronomy & Astrophysics.

[4]  B. Benson,et al.  Anatomy of a Cooling Flow: The Feedback Response to Pure Cooling in the Core of the Phoenix Cluster , 2019, The Astrophysical Journal.

[5]  A. Edge,et al.  Driving massive molecular gas flows in central cluster galaxies with AGN feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  M. McDonald,et al.  Using Hα Filaments to Probe Active Galactic Nuclei Feedback in Galaxy Clusters , 2019, The Astrophysical Journal.

[7]  J. Wise,et al.  The Interplay of Kinetic and Radiative Feedback in Galaxy Clusters , 2018, The Astrophysical Journal.

[8]  Devin W. Silvia,et al.  ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, J. Open Source Softw..

[9]  P. Nulsen,et al.  A Universal Entropy Profile for the Hot Atmospheres of Galaxies and Clusters within R2500 , 2018, The Astrophysical Journal.

[10]  A. Edge,et al.  Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety. , 2018, 1802.00031.

[11]  A. Edge,et al.  The Onset of Thermally Unstable Cooling from the Hot Atmospheres of Giant Galaxies in Clusters: Constraints on Feedback Models , 2017, 1704.00011.

[12]  E. Quataert,et al.  Entrainment in trouble: cool cloud acceleration and destruction in hot supernova-driven galactic winds , 2015, 1507.01951.

[13]  B. Benson,et al.  Alma Observations of Massive Molecular Gas Filaments Encasing Radio Bubbles in the Phoenix Cluster , 2016, 1611.00017.

[14]  C. Conselice,et al.  HST imaging of the dusty filaments and nucleus swirl in NGC4696 at the centre of the Centaurus Cluster , 2016, 1606.02436.

[15]  M. Donahue,et al.  Cold, clumpy accretion onto an active supermassive black hole , 2016, Nature.

[16]  A. Edge,et al.  A MECHANISM FOR STIMULATING AGN FEEDBACK BY LIFTING GAS IN MASSIVE GALAXIES , 2016, 1604.04629.

[17]  B. Benson,et al.  DEEP CHANDRA, HST-COS, AND MEGACAM OBSERVATIONS OF THE PHOENIX CLUSTER: EXTREME STAR FORMATION AND AGN FEEDBACK ON HUNDRED KILOPARSEC SCALES , 2015, 1508.05941.

[18]  B. McNamara,et al.  Hot Outflows in Galaxy Clusters , 2015, 1507.05973.

[19]  A. Edge,et al.  Effects of the variability of the nucleus of NGC1275 on X-ray observations of the surrounding intracluster medium , 2015, 1505.03754.

[20]  A. Babul,et al.  COOL CORE CYCLES: COLD GAS AND AGN JET FEEDBACK IN CLUSTER CORES , 2015, 1504.02215.

[21]  M. Donahue,et al.  COOLING, AGN FEEDBACK, AND STAR FORMATION IN SIMULATED COOL-CORE GALAXY CLUSTERS , 2015, 1503.02660.

[22]  M. Donahue,et al.  Regulation of star formation in giant galaxies by precipitation, feedback and conduction , 2014, Nature.

[23]  A. Fabian,et al.  A volume-limited sample of X-ray galaxy groups and clusters – I. Radial entropy and cooling time profiles , 2013, 1312.0798.

[24]  Adrian T. Lee,et al.  A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies , 2012, Nature.

[25]  M. Donahue,et al.  Herschel observations of extended atomic gas in the core of the Perseus cluster , 2012, 1208.1730.

[26]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[27]  P. Sharma,et al.  CAUSE AND EFFECT OF FEEDBACK: MULTIPHASE GAS IN CLUSTER CORES HEATED BY AGN JETS , 2011, 1110.6063.

[28]  S. Veilleux,et al.  OPTICAL SPECTROSCOPY OF Hα FILAMENTS IN COOL CORE CLUSTERS: KINEMATICS, REDDENING, AND SOURCES OF IONIZATION , 2011, 1111.0006.

[29]  M. Donahue,et al.  Herschel observations of the Centaurus cluster – the dynamics of cold gas in a cool core , 2011, 1108.2757.

[30]  Usa,et al.  The Energy Source of the Filaments Around the Giant Galaxy NGC 1275 , 2011, 1105.1735.

[31]  M. Donahue,et al.  POLYCYCLIC AROMATIC HYDROCARBONS, IONIZED GAS, AND MOLECULAR HYDROGEN IN BRIGHTEST CLUSTER GALAXIES OF COOL-CORE CLUSTERS OF GALAXIES , 2011, 1103.1410.

[32]  T. Abel,et al.  enzo+moray: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing , 2010, 1012.2865.

[33]  S. Veilleux,et al.  ON THE ORIGIN OF THE EXTENDED Hα FILAMENTS IN COOLING FLOW CLUSTERS , 2010, 1008.0392.

[34]  M. Bremer,et al.  The distribution and condition of the warm molecular gas in Abell 2597 and Sersic 159-03 , 2010, 1002.3297.

[35]  C. Conselice,et al.  Magnetic support of the optical emission line filaments in NGC 1275 , 2008, Nature.

[36]  C. Crawford,et al.  Ionized nebulae surrounding brightest cluster galaxies , 2007, 0706.0661.

[37]  M. Hudson,et al.  Line emission in the brightest cluster galaxies of the NOAO Fundamental Plane and Sloan Digital Sky Surveys , 2007, 0704.3242.

[38]  G. Ferland,et al.  Discovery of Atomic and Molecular Mid-Infrared Emission Lines in Off-Nuclear Regions of NGC 1275 and NGC 4696 with the Spitzer Space Telescope , 2007, astro-ph/0702431.

[39]  F. Brighenti,et al.  Heating Cooling Flows with Weak Shock Waves , 2005, astro-ph/0511151.

[40]  G. Bryan,et al.  Structure Formation , 2005 .

[41]  M. Bremer,et al.  HII and H2 in the envelopes of cooling flow central galaxies , 2005, astro-ph/0504413.

[42]  I. Cambridge,et al.  The nature of the molecular gas system in the core of NGC 1275 , 2005, astro-ph/0502537.

[43]  C. Carilli,et al.  The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts , 2005, Nature.

[44]  P. Nulsen,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/12/04 A SYSTEMATIC STUDY OF RADIO-INDUCED X-RAY CAVITIES IN CLUSTERS, GROUPS, AND GALAXIES , 2004 .

[45]  W. Forman,et al.  XMM—Newton observations of the Perseus cluster — II. Evidence for gas motions in the core , 2003, astro-ph/0309427.

[46]  F. Combes,et al.  Cold molecular gas in cooling flow clusters of galaxies , 2003, astro-ph/0309304.

[47]  A. Edge,et al.  Resolving Molecular Gas in the Central Galaxies of Cooling Flow Clusters , 2003 .

[48]  C. Conselice,et al.  On the Nature of the NGC 1275 System , 2001, astro-ph/0108019.

[49]  A. Edge The detection of molecular gas in the central galaxies of cooling flow clusters , 2001, astro-ph/0106225.

[50]  M. Bremer,et al.  Infrared spectra of cooling flow galaxies , 2000, astro-ph/0009418.

[51]  Institute for Astronomy,et al.  The ROSAT Brightest Cluster Sample — III. Optical spectra of the central cluster galaxies , 1999, astro-ph/9903057.

[52]  G. Lake,et al.  The Structure of Cold Dark Matter Halos , 1998 .

[53]  H. Nørgaard-Nielsen,et al.  Interstellar matter in Shapley-Ames elliptical galaxies. II. The distribution of dust and ionized gas , 1994 .

[54]  W. Sparks,et al.  Imaging observations of gas and dust in NGC 4696 and implications for cooling flow models , 1989 .

[55]  Patrick J. McCarthy,et al.  Dynamical, physical, and chemical properties of emission-line nebulae in cooling flows , 1989 .

[56]  Raymond E. White,et al.  Steady state cooling flow models for normal elliptical galaxies , 1987 .

[57]  A. Fabian,et al.  The optical spectra of central galaxies in southern clusters: evidence for star formation , 1987 .

[58]  L. Cowie,et al.  Long-slit spectroscopy of gas in the cores of X-ray luminous clusters , 1985 .

[59]  E. Salpeter,et al.  On the physics of dust grains in hot gas. , 1979 .