Cubature Formulas on Spheres
暂无分享,去创建一个
[1] E. Stein. Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. , 1970 .
[2] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[3] V. I. Lebedev,et al. Spherical quadrature formulas exact to orders 25–29 , 1977 .
[4] J. Seidel,et al. Spherical codes and designs , 1977 .
[5] S. G. Hoggar,et al. t-Designs in Projective Spaces , 1982, Eur. J. Comb..
[6] Kendall Atkinson,et al. Numerical integration on the sphere , 1982, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[7] P. Seymour,et al. Averaging sets: A generalization of mean values and spherical designs , 1984 .
[8] M. Taibleson. Estimates for Finite Expansions of Gegenbauer and Jacobi Polynomials , 1985 .
[9] D. Hajela. Construction techniques for some thin sets in duals of compact abelian groups , 1986 .
[10] J. Lindenstrauss,et al. Distribution of points on spheres and approximation by zonotopes , 1988 .
[11] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[12] B. Reznick. Sums of Even Powers of Real Linear Forms , 1992 .
[13] Yu. I. Lyubich,et al. Isometric embed-dings between classical Banach spaces, cubature formulas, and spherical designs , 1993 .
[14] J. Korevaar,et al. Chebyshev-type quadrature on multidimensional domains , 1994 .
[15] J. J. Seidel,et al. Isometric embeddings and geometric designs , 1994, Discret. Math..
[16] N. J. A. Sloane,et al. McLaren’s improved snub cube and other new spherical designs in three dimensions , 1996, Discret. Comput. Geom..
[17] E. Saff,et al. Distributing many points on a sphere , 1997 .
[18] Vladimir A. Yudin. Lower bounds for spherical designs , 1997 .
[19] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[20] Yuan Xu,et al. Invariant Cubature Formulae for Spheres and Balls by Combinatorial Methods , 2000, SIAM J. Numer. Anal..
[21] Hrushikesh Narhar Mhaskar,et al. Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature , 2001, Math. Comput..
[22] Yuan Xu,et al. Constructing fully symmetric cubature formulae for the sphere , 2001, Math. Comput..
[23] Ian H. Sloan,et al. Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..
[24] Hrushikesh Narhar Mhaskar,et al. Local quadrature formulas on the sphere , 2004, J. Complex..
[25] Feng Dai,et al. Approximation of smooth functions on compact two-point homogeneous spaces , 2005, math/0510007.
[26] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[27] Yeol Je Cho,et al. Topological Degree Theory and Applications , 2006 .
[28] Paul C. Leopardi. A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER , 2006 .
[29] Pencho Petrushev,et al. Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..
[30] F. Dai,et al. Positive Cubature Formulas and Marcinkiewicz–Zygmund Inequalities on Spherical Caps , 2007, math/0703768.
[31] Eiichi Bannai,et al. A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..
[32] Andriy Bondarenko,et al. Optimal asymptotic bounds for spherical designs , 2010, 1009.4407.
[33] Xiaojun Chen,et al. Well Conditioned Spherical Designs for Integration and Interpolation on the Two-Sphere , 2010, SIAM J. Numer. Anal..