Logic Meets Algebra: the Case of Regular Languages

The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.

[1]  Howard Straubing,et al.  Definability of Languages by Generalized First-Order Formulas over N+ , 2007, SIAM J. Comput..

[2]  Christian Glaßer,et al.  Languages of Dot-Depth 3/2 , 2000, Theory of Computing Systems.

[3]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[4]  Denis Thérien,et al.  An Algebraic Point of View on the Crane Beach Property , 2006, CSL.

[5]  Thomas Schwentick,et al.  Two-Variable Logic on Words with Data , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[6]  Howard Straubing,et al.  First Order Formulas with Modular Ppredicates , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[7]  Denis Thérien,et al.  Circuit lower bounds via Ehrenfeucht-Fraisse games , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[8]  Christoph Behle,et al.  FO[<]-uniformity , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[9]  Thomas Schwentick,et al.  Expressive Power of Pebble Automata , 2006, ICALP.

[10]  Denis Thérien,et al.  Bridges between Algebraic Automata Theory and Complexity Theory , 2006, Bull. EATCS.

[11]  D. Thérien,et al.  An Algebraic Point of View on the Crane-Beach Conjecture , 2006 .

[12]  Howard Straubing,et al.  Bounds on an exponential sum arising in Boolean circuit complexity , 2005 .

[13]  Denis Thérien,et al.  Restricted Two-Variable Sentences, Circuits and Communication Complexity , 2005, ICALP.

[14]  Zoltán Ésik,et al.  Algebraic recognizability of regular tree languages , 2005, Theor. Comput. Sci..

[15]  Pavel Pudlák,et al.  Bounded-depth circuits: separating wires from gates , 2005, STOC '05.

[16]  J. Bourgain Estimation of certain exponential sums arising in complexity theory , 2005 .

[17]  Michael Benedikt,et al.  Regular Tree Languages Definable in FO , 2005, STACS.

[18]  Nicole Schweikardt,et al.  Arithmetic, first-order logic, and counting quantifiers , 2002, TOCL.

[19]  Jean-Éric Pin,et al.  Logic, semigroups and automata on words , 1996, Annals of Mathematics and Artificial Intelligence.

[20]  Denis Thérien,et al.  Circuits constructed with MODq gates cannot compute “AND” in sublinear size , 1994, computational complexity.

[21]  Howard Straubing,et al.  Complex polynomials and circuit lower bounds for modular counting , 1992, computational complexity.

[22]  Denis Thérien,et al.  NC1: The automata-theoretic viewpoint , 1991, computational complexity.

[23]  James F. Lynch,et al.  Complexity classes and theories of finite models , 1981, Mathematical systems theory.

[24]  Howard Straubing,et al.  A Note on MODp - MODm Circuits , 2006, Theory of Computing Systems.

[25]  Igor Walukiewicz,et al.  Characterizing EF and EX tree logics , 2006, Theor. Comput. Sci..

[26]  Denis Thérien,et al.  Complete Classifications for the Communication Complexity of Regular Languages , 2005, Theory of Computing Systems.

[27]  Denis Thérien,et al.  Monoids and Computations , 2004, Int. J. Algebra Comput..

[28]  Pascal Weil,et al.  Algebraic Recognizability of Languages , 2004, MFCS.

[29]  Klaus-Jörn Lange,et al.  Some results on majority quantifiers over words , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[30]  Amir Pnueli,et al.  On Recognizable Timed Languages , 2004, FoSSaCS.

[31]  W. Thomas Star-Free Regular Sets of ~o-Sequences , 2004 .

[32]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[33]  Nissim Francez,et al.  An algebraic characterization of deterministic regular languages over infinite alphabets , 2003, Theor. Comput. Sci..

[34]  Dietrich Kuske,et al.  Towards a language theory for infinite N-free pomsets , 2003, Theor. Comput. Sci..

[35]  Denis Thérien,et al.  Complete Classifications for the Communication Complexity of Regular Languages , 2003, STACS.

[36]  Thomas Wilke,et al.  Nesting Until and Since in Linear Temporal Logic , 2002, Theory of Computing Systems.

[37]  Denis Thérien,et al.  DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .

[38]  Jonathan D. H. Smith,et al.  CATEGORIES OF ALGEBRAS , 2002 .

[39]  Howard Straubing,et al.  On Logical Descriptions of Regular Languages , 2002, LATIN.

[40]  Howard Straubing,et al.  Weakly Iterated Block Products of Finite Monoids , 2002, LATIN.

[41]  D. Borchmann,et al.  Automata and Logic , 2002 .

[42]  Pascal Weil,et al.  A conjecture on the concatenation product , 2001, RAIRO Theor. Informatics Appl..

[43]  Thomas Wilke,et al.  Linear Temporal Logic and Finite Semigroups , 2001, MFCS.

[44]  Patricia Bouyer,et al.  An Algebraic Characterization of Data and Timed Languages , 2001, CONCUR.

[45]  Mark V. Sapir,et al.  Closed Subgroups in Pro-V Topologies and the Extension Problem for Inverse Automata , 2001, Int. J. Algebra Comput..

[46]  Christian Glaßer,et al.  Level 5/2 of the Straubing-Thérien Hierarchy for Two-Letter Alphabets , 2001, Developments in Language Theory.

[47]  Neil Immerman,et al.  The Crane Beach Conjecture , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[48]  Howard Straubing,et al.  Regular Languages Defined by Generalized First-Order Formulas with a Bounded Number of Bound Variables , 2001, STACS.

[49]  Olivier Carton,et al.  Wreath product and infinite words , 2000 .

[50]  Kousha Etessami,et al.  An Until Hierarchy and Other Applications of an Ehrenfeucht-Fraïssé Game for Temporal Logic , 2000, Inf. Comput..

[51]  Juha Nurmonen,et al.  Counting Modulo Quantifiers on Finite Structures , 2000, Inf. Comput..

[52]  Pascal Weil,et al.  Series-parallel languages and the bounded-width property , 2000, Theor. Comput. Sci..

[53]  Jean-Camille Birget,et al.  Algorithmic problems in groups and semigroups , 2000 .

[54]  Howard Straubing,et al.  When Can One Finite Monoid Simulate Another , 2000 .

[55]  Denis Thérien,et al.  Modular temporal logic , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[56]  Howard Straubing,et al.  Lower bounds for modular counting by circuits with modular gates , 1995, computational complexity.

[57]  Thomas Schwentick,et al.  The Descriptive Complexity Approach to LOGCFL , 1998, J. Comput. Syst. Sci..

[58]  Denis Thérien,et al.  An Algebraic Approach to Communication Complexity , 1998, ICALP.

[59]  Thomas Wilke,et al.  Over words, two variables are as powerful as one quantifier alternation , 1998, STOC '98.

[60]  Howard Straubing,et al.  Finite Semigroup Varieties Defined by Programs , 1997, Theor. Comput. Sci..

[61]  Alexei P. Stolboushkin,et al.  y = 2x VS. y = 3x , 1997, Journal of Symbolic Logic.

[62]  Jean-Éric Pin,et al.  Syntactic Semigroups , 1997, Handbook of Formal Languages.

[63]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[64]  Kousha Etessami,et al.  First-order logic with two variables and unary temporal logic , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[65]  Eric Allender,et al.  Circuit Complexity before the Dawn of the New Millennium , 1996, FSTTCS.

[66]  Thomas Wilke,et al.  Temporal logic and semidirect products: an effective characterization of the until hierarchy , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[67]  Thomas Wilke,et al.  An Algebraic Characterization of Frontier Testable Tree Languages , 1996, Theor. Comput. Sci..

[68]  Howard Straubing,et al.  Regular Languages Defined with Generalized Quanifiers , 1995, Inf. Comput..

[69]  Wojciech Zielonka,et al.  The Book of Traces , 1995 .

[70]  Jorge Almeida,et al.  Finite Semigroups and Universal Algebra , 1995 .

[71]  Howard Straubing,et al.  Logics for Regular Languages, Finite Monoids, and Circuit Complexity , 1995 .

[72]  Jean-Éric Pin,et al.  Logic on Words , 2001, Bull. EATCS.

[73]  Pavel Pudlák,et al.  Communication in bounded depth circuits , 1994, Comb..

[74]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[75]  Denis Thi Rien CIRCUITS CONSTRUCTED WITH MODq GATES CANNOT COMPUTE "AND" IN SUBLINEAR SIZE , 1994 .

[76]  David F. Cowan,et al.  Inverse Monoids of dot-Depth Two , 1993, Int. J. Algebra Comput..

[77]  Wolfgang Thomas,et al.  Regular Tree Languages Without Unary Symbols are Star-Free , 1993, FCT.

[78]  Dominique Perrin,et al.  On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..

[79]  Howard Straubing,et al.  Characterizations of regular languages in low level complexity classes , 2001, Bull. EATCS.

[80]  Pascal Weil,et al.  Closure of Varieties of Languages under Products with Counter , 1992, J. Comput. Syst. Sci..

[81]  Howard Straubing,et al.  On a Conjecture Concerning Dot-Depth Two Languages , 1992, Theor. Comput. Sci..

[82]  Pierre Péladeau,et al.  Formulas, Regular Languages and Boolean Circuits , 1992, Theor. Comput. Sci..

[83]  Howard Straubing,et al.  Circuit Complexity and the Expressive Power of Generalized First-Order Formulas , 1992, ICALP.

[84]  Howard Straubing,et al.  Regular Languages in NC¹ , 1992, J. Comput. Syst. Sci..

[85]  Bertrand Le Saëc,et al.  A Purely Algebraic Proof of McNaughton's Theorem on Infinite Words , 1991, FSTTCS.

[86]  Dung T. Huynh,et al.  Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..

[87]  Howard Straubing,et al.  Superlinear lower bounds for bounded-width branching programs , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[88]  Joëlle Cohen-Chesnot,et al.  On the Expressive Power of Temporal Logic for Infinite Words , 1991, Theor. Comput. Sci..

[89]  Uschi Heuter,et al.  First-order properties of trees, star-free expressions, and aperiodicity , 1991, RAIRO Theor. Informatics Appl..

[90]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[91]  Franco P. Preparata,et al.  Characterization of Associative Operations with Prefix Circuits of Constant Depth and Linear Size , 1990, SIAM J. Comput..

[92]  Denis Thérien,et al.  Non-Uniform Automata Over Groups , 1987, Inf. Comput..

[93]  John Rhodes,et al.  The kernel of monoid morphisms , 1989 .

[94]  Howard Straubing,et al.  regular Languages Defined with Generalized Quantifiers , 1988, ICALP.

[95]  Howard Straubing,et al.  Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..

[96]  N. Immerman,et al.  On uniformity within NC 1 . , 1988 .

[97]  N. Immerman,et al.  Definability with Bounded Number of Bound Variables , 1989, Inf. Comput..

[98]  Bret Tilson,et al.  Categories as algebra: An essential ingredient in the theory of monoids , 1987 .

[99]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[100]  Denis Thérien,et al.  Finite monoids and the fine structure of NC1 , 1987, STOC.

[101]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[102]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[103]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[104]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[105]  Richard J. Lipton,et al.  Unbounded fan-in circuits and associative functions , 1983, J. Comput. Syst. Sci..

[106]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[107]  Denis Thérien,et al.  Graph congruences and wreath products , 1985 .

[108]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[109]  Yuri Gurevich,et al.  A Logic for Constant-Depth Circuits , 1984, Inf. Control..

[110]  Dominique Perrin,et al.  Varietes de Semigroupes et Mots Infinis , 1983, ICALP.

[111]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[112]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[113]  James F. Lynch,et al.  On sets of relations definable by addition , 1982, Journal of Symbolic Logic.

[114]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[115]  Howard Straubing,et al.  Monoids of upper-triangular matrices , 1981 .

[116]  M. Schützenberger,et al.  Sur Le Produit De Concatenation Non Ambigu , 1976 .

[117]  S. Eilenberg Automata, Languages and Machines, Vol. B , 1976 .

[118]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[119]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[120]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[121]  E. Hartwell Success Story , 1969, Nature.

[122]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[123]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[124]  J. Rhodes,et al.  Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines , 1965 .

[125]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .