On the modeling of viscous incompressible flows with smoothed particle hydro-dynamics

Smoothed particle hydrodynamics (SPH) is a Lagrangian, meshfree particle method and has been widely applied to different areas in engineering and science. Since its original extension to modeling free surface flows by Monaghan in 1994, SPH has been gradually developed into an attractive approach for modeling viscous incompressible fluid flows. This paper presents an overview on the recent progresses of SPH in modeling viscous incompressible flows in four major aspects which are closely related to the computational accuracy of SPH simulations. The advantages and disadvantages of different SPH particle approximation schemes, pressure field solution approaches, solid boundary treatment algorithms and particle adapting algorithms are described and analyzed. Some new perspectives and future trends in SPH modeling of viscous incompressible flows are discussed.

[1]  Sivakumar Kulasegaram,et al.  Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations , 2000 .

[2]  Paul W. Cleary,et al.  Three‐dimensional wave impact on a rigid structure using smoothed particle hydrodynamics , 2012 .

[3]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[4]  Masashi Kashiwagi,et al.  A CIP-based method for numerical simulations of violent free-surface flows , 2004 .

[5]  S. Koshizuka,et al.  International Journal for Numerical Methods in Fluids Numerical Analysis of Breaking Waves Using the Moving Particle Semi-implicit Method , 2022 .

[6]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[7]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[8]  Benedict D. Rogers,et al.  Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters , 2012, J. Parallel Distributed Comput..

[9]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[10]  Guirong Liu,et al.  Modeling incompressible flows using a finite particle method , 2005 .

[11]  P. Koumoutsakos MULTISCALE FLOW SIMULATIONS USING PARTICLES , 2005 .

[12]  Mourad Zeghal,et al.  COUPLED CONTINUUM-DISCRETE MODEL FOR SATURATED GRANULAR SOILS , 2005 .

[13]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[14]  Guirong Liu,et al.  Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology , 2003 .

[15]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[16]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[17]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[18]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[19]  David Le Touzé,et al.  SPH high-performance computing simulations of rigid solids impacting the free-surface of water , 2009 .

[20]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[21]  B. Rogers,et al.  State-of-the-art of classical SPH for free-surface flows , 2010 .

[22]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[23]  Robert A. Dalrymple,et al.  Green water overtopping analyzed with a SPH model , 2005 .

[24]  G. R. Johnson,et al.  SPH for high velocity impact computations , 1996 .

[25]  G. R. Johnson,et al.  Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations , 1994 .

[26]  Salvatore Marrone,et al.  Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows , 2016, J. Comput. Phys..

[27]  Y. Amini,et al.  A new model to solve fluid–hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method , 2011 .

[28]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[29]  R. Taylor The Finite Element Method, the Basis , 2000 .

[30]  S. J. Lind,et al.  Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves , 2012, J. Comput. Phys..

[31]  L. Hernquist,et al.  Some cautionary remarks about smoothed particle hydrodynamics , 1993 .

[32]  I. Schuessler,et al.  Comments on smoothed particle hydrodynamics , 1981 .

[33]  Jianzhong Chang,et al.  On the treatment of solid boundary in smoothed particle hydrodynamics , 2011, Science China Technological Sciences.

[34]  Benedict D. Rogers,et al.  SPH Modeling of Tsunamis , 2008 .

[35]  Romesh C. Batra,et al.  Search algorithm, and simulation of elastodynamic crack propagation by modified smoothed particle hydrodynamics (MSPH) method , 2007 .

[36]  Moncho Gómez-Gesteira,et al.  Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method , 2013, Comput. Phys. Commun..

[37]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[38]  Hehua Zhu,et al.  A local search algorithm for natural neighbours in the natural element method , 2005 .

[39]  Furen Ming,et al.  Coupled SPHS–BEM method for transient fluid–structure interaction and applications in underwater impacts , 2013 .

[40]  Edmond Y.M. Lo,et al.  Simulation of near-shore solitary wave mechanics by an incompressible SPH method , 2002 .

[41]  Pengzhi Lin,et al.  A numerical study of breaking waves in the surf zone , 1998, Journal of Fluid Mechanics.

[42]  Xu Han,et al.  Fluid–structure interaction analysis by coupled FE–SPH model based on a novel searching algorithm , 2014 .

[43]  Nikolas Mitrou,et al.  A Web-based Database System for Providing Technical Information on ATM Networking Platforms , 2003 .

[44]  Shaofan Li,et al.  A hybrid peridynamics–SPH simulation of soil fragmentation by blast loads of buried explosive , 2016 .

[45]  Hui Li,et al.  An improved SPH method for modeling liquid sloshing dynamics , 2012 .

[46]  Arne Bøckmann,et al.  Incompressible SPH for free surface flows , 2012 .

[47]  Robert A. Dalrymple,et al.  Using a Three-Dimensional Smoothed Particle Hydrodynamics Method for Wave Impact on a Tall Structure , 2004 .

[48]  Gui-Rong Liu,et al.  Restoring particle consistency in smoothed particle hydrodynamics , 2006 .

[49]  M. B. Liu,et al.  A kernel gradient free (KGF) SPH method , 2015 .

[50]  Zhi Zong,et al.  A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows , 2013 .

[51]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[52]  Salvatore Marrone,et al.  An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers , 2013, J. Comput. Phys..

[53]  Yee-Chung Jin,et al.  A weakly compressible MPS method for modeling of open‐boundary free‐surface flow , 2009 .

[54]  S. Shao,et al.  Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling , 2006 .

[55]  K. Y. Lam,et al.  Constructing smoothing functions in smoothed particle hydrodynamics with applications , 2003 .

[56]  Afzal Suleman,et al.  A robust weakly compressible SPH method and its comparison with an incompressible SPH , 2012 .

[57]  Mahesh Prakash,et al.  Discrete–element modelling and smoothed particle hydrodynamics: potential in the environmental sciences , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[58]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[59]  Hua Liu,et al.  Water Entry of a Wedge Based on Sph Model with an Improved Boundary Treatment , 2009 .

[60]  Curtis Smith,et al.  Large-scale solitary wave simulation with implicit incompressible SPH , 2016 .

[61]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[62]  Pep Español,et al.  Boundary Models in DPD , 1998 .

[63]  Ted Belytschko,et al.  Overview and applications of the reproducing Kernel Particle methods , 1996 .

[64]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[65]  Joao M.M. Sousa,et al.  A detailed study of lid‐driven cavity flow at moderate Reynolds numbers using Incompressible SPH , 2014 .

[66]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[67]  J. K. Chen,et al.  A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems , 2000 .

[68]  C. Ancey,et al.  Improved SPH methods for simulating free surface flows of viscous fluids , 2009 .

[69]  Seiichi Koshizuka,et al.  Fluid-shell structure interaction analysis by coupled particle and finite element method , 2007 .

[70]  Xin Liu,et al.  An improved incompressible SPH model for simulation of wave–structure interaction , 2013 .

[71]  Hui Li,et al.  An SPH model for free surface flows with moving rigid objects , 2014 .

[72]  Charles Hirsch,et al.  Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .

[73]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[74]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[75]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[76]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[77]  A. Colagrossi,et al.  δ-SPH model for simulating violent impact flows , 2011 .

[78]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[79]  Krish Thiagarajan,et al.  An SPH projection method for simulating fluid-hypoelastic structure interaction , 2009 .