A sensitivity study of the Wigner Monte Carlo method

Recently a Wigner Monte Carlo technique exploiting the concept of signed particles has been developed for time dependent, multi-dimensional simulations of quantum mechanical effects in the ballistic regime. This method is based on the introduction of a semi-discrete phase-space which involves a free parameter L C defining the discretization of the space of momenta. A systematic study to understand how the quality and reliability of the solution is influenced by this parameter is necessary. In this work, we analyze the sensitivity of the Wigner Monte Carlo method on L C . To this aim, three quality measures are introduced based on a comparison with the Schrodinger equation (considered as a benchmark model in this work). We show that, essentially, the Wigner Monte Carlo method is not affected by the choice of L C . Indeed, a large range of valid choices is available which demonstrates the robustness and reliability of the method.

[1]  J. M. Sellier,et al.  Electron dynamics in nanoscale transistors by means of Wigner and Boltzmann approaches , 2014 .

[2]  M. Planck,et al.  Entropie und Temperatur strahlender Wärme , 1900 .

[3]  Damien Querlioz,et al.  The Wigner Monte Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence , 2010 .

[4]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[5]  David K. Ferry,et al.  Wigner function quantum Monte Carlo , 2002 .

[6]  Mohamed A. Osman,et al.  Investigation of ballistic transport through resonant-tunnelling quantum wells using wigner function approach , 1985 .

[7]  David K. Ferry,et al.  A Wigner Function Based Ensemble Monte Carlo Approach for Accurate Incorporation of Quantum Effects in Device Simulation , 2002 .

[8]  Lucian Shifren,et al.  Particle Monte Carlo simulation of Wigner function tunneling , 2001 .

[9]  D. Querlioz,et al.  Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices , 2008 .

[10]  Carlo Jacoboni,et al.  Wigner-function formulation for quantum transport in semiconductors: theory and Monte Carlo approach , 2001 .

[11]  Siegfried Selberherr,et al.  The Role of Annihilation in a Wigner Monte Carlo Approach , 2013, LSSC.

[12]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[13]  M. Born Zur Quantenmechanik der Stoßvorgänge , 1926 .

[14]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[15]  Byoungho Lee,et al.  On the high order numerical calculation schemes for the Wigner transport equation , 1999 .

[16]  D. Querlioz,et al.  Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport , 2009 .

[17]  D. Querlioz,et al.  Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation , 2010 .

[18]  Siegfried Selberherr,et al.  A benchmark study of the Wigner Monte Carlo method , 2014, Monte Carlo Methods Appl..

[19]  Jordi Suñé,et al.  QUANTUM MONTE CARLO SIMULATION OF RESONANT TUNNELING DIODES BASED ON THE WIGNER DISTRIBUTION FUNCTION FORMALISM , 1998 .

[20]  Ivan Dimov Applicability and Robustness of Monte Carlo Algorithms for Very Large Linear Algebra Problems , 2007 .