All-electron scalar relativistic basis sets for the 6p elements

[1]  Michael Dolg,et al.  Segmented Contracted Douglas-Kroll-Hess Adapted Basis Sets for Lanthanides. , 2011, Journal of chemical theory and computation.

[2]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for the Actinides , 2011 .

[3]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for the Lanthanides. , 2009, Journal of chemical theory and computation.

[4]  F. Neese Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling , 2009 .

[5]  M. Solà,et al.  Importance of the basis set for the spin-state energetics of iron complexes. , 2008, The journal of physical chemistry. A.

[6]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. , 2008, Journal of chemical theory and computation.

[7]  T. Cundari,et al.  Effective Core Potential Approaches to the Chemistry of the Heavier Elements , 2007 .

[8]  Roberto L. A. Haiduke,et al.  Accurate relativistic adapted Gaussian basis sets for Cesium through Radon without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models , 2006, J. Comput. Chem..

[9]  H. Tatewaki,et al.  Gaussian-type function set without prolapse for the Dirac-Fock-Roothaan equation (II): 80Hg through 103Lr. , 2006, The Journal of chemical physics.

[10]  K. Dyall Relativistic Quadruple-Zeta and Revised Triple-Zeta and Double-Zeta Basis Sets for the 4p, 5p, and 6p Elements , 2006 .

[11]  D. Laikov A new class of atomic basis functions for accurate electronic structure calculations of molecules , 2005 .

[12]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[13]  K. Fægri Even tempered basis sets for four-component relativistic quantum chemistry , 2005 .

[14]  Dimitri N. Laikov,et al.  PRIRODA-04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing , 2005 .

[15]  H. Tatewaki,et al.  Gaussian-type function set without prolapse 1H through 83Bi for the Dirac-Fock-Roothaan equation. , 2004, The Journal of chemical physics.

[16]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[17]  E. Miyoshi,et al.  Relativistic correlating basis sets for the main group elements from Cs to Ra , 2003 .

[18]  K. Dyall Relativistic and nonrelativistic finite nucleus optimized double zeta basis sets for the 4p, 5p and 6p elements (Theor Chem Acc (1998) 99:366-371): addendum , 2002 .

[19]  K. Dyall Relativistic and Nonrelativistic Energy-Optimized Polarized Triple Zeta Basis Sets for the 4p, 5p and 6p Elements. , 2002 .

[20]  Markus Reiher,et al.  The generalized Douglas–Kroll transformation , 2002 .

[21]  Bernd Schimmelpfennig,et al.  The restricted active space (RAS) state interaction approach with spin-orbit coupling , 2002 .

[22]  K. Hirao,et al.  Accurate relativistic Gaussian basis sets determined by the third-order Douglas–Kroll approximation with a finite-nucleus model , 2002 .

[23]  K. Hirao,et al.  Relativistic Effects for Polarizabilities and Hyperpolarizabilities of Rare Gas Atoms , 2001 .

[24]  K. Fægri Relativistic Gaussian basis sets for the elements K – Uuo , 2001 .

[25]  H. Tatewaki,et al.  Chemically reliable uncontracted Gaussian-type basis sets for atoms H to Lr , 2000 .

[26]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[27]  K. Dyall Relativistic and nonrelativistic finite nucleus optimized triple-zeta basis sets for the 4p, 5p and 6p elements , 1998 .

[28]  Christoph van Wüllen,et al.  Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations , 1998 .

[29]  F. E. Jorge,et al.  Accurate universal Gaussian basis set for all atoms of the Periodic Table , 1998 .

[30]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[31]  F. E. Jorge,et al.  A universal Gaussian basis set for atoms cerium through lawrencium generated with the generator coordinate Hartree–Fock method , 1997 .

[32]  G. Frenking,et al.  Topological analysis of electron density distribution taken from a pseudopotential calculation , 1997, J. Comput. Chem..

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[35]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[36]  K. Dyall An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian , 1994 .

[37]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[38]  Bernd A. Hess,et al.  Revision of the Douglas-Kroll transformation. , 1989, Physical review. A, General physics.

[39]  M. Zerner A configuration-averaged Hartree-Fock procedure , 1989 .

[40]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[41]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[42]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[43]  Frank Neese,et al.  The ORCA program system , 2012 .

[44]  M. Dolg Effective core potentials , 2000 .

[45]  K. Dyall Relativistic and nonrelativistic finite nucleus optimized double zeta basis sets for the 4 , 1998 .

[46]  N. Runeberg,et al.  Relativistic pseudopotential calculations on Xe2, RnXe, and Rn2: The van der Waals properties of radon † , 1998 .

[47]  M. Zerner,et al.  Spin-averaged Hartree-Fock procedure for spectroscopic calculations: The absorption spectrum of Mn2+ in ZnS crystals , 1997 .

[48]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[49]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .