Whimper of a Bang: Documenting the Final Days of the Nearby Type Ia Supernova 2011fe

Using the Hubble Space Telescope (HST) and the Large Binocular Telescope, we followed the evolution of the Type Ia supernova (SN Ia) 2011fe for an unprecedented 1840 days past $B$-band maximum light and over a factor of $7$ million in flux. At 1840 days, the 4000 - 17000 A quasi-bolometric luminosity is just ($420 \pm 20$) $L_{\odot}$. By measuring the late-time quasi-bolometric light curve, we present the first confident detection of $^{57}$Co decay in a SN Ia light curve and estimate a mass ratio of $\log (^{57}\mathrm{Co}/^{56}\mathrm{Co}) = -1.59^{+ 0.06 }_{- 0.07 }$. We do not have a clean detection of $^{55}\mathrm{Fe}$, but find a limit of $^{55}\mathrm{Fe}/^{57}\mathrm{Co} < 0.22$ with 99% confidence. These abundance ratios provide unique constraints on the progenitor system because the central density of the exploding white dwarf(s) dictates these nucleosynthetic yields. The observed ratios strongly prefer the lower central densities of double-degenerate models ($^{55}\mathrm{Fe}/^{57}\mathrm{Co} = 0.27$) over the higher central densities of near-Chandrasekhar-mass single-degenerate models ($^{55}\mathrm{Fe}/^{57}\mathrm{Co} = 0.68$). However, additional theoretical studies predicting isotopic yields from a broader range of progenitor systems are motivated by these unique observations. We will continue to observe SN 2011fe for another $\sim 600$ days with HST and possibly beyond.

[1]  B. Shappee,et al.  Greatly enhanced eccentricity oscillations in quadruple systems composed of two binaries: implications for stars, planets and transients , 2013, 1304.3152.

[2]  W. E. Kerzendorf,et al.  Spectroscopy of the Type Ia supernova 2011fe past 1000 d , 2014, 1411.7599.

[3]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[4]  Nathaniel R. Butler,et al.  Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe , 2011, Nature.

[5]  O. Graur,et al.  LATE-TIME PHOTOMETRY OF TYPE IA SUPERNOVA SN 2012cg REVEALS THE RADIOACTIVE DECAY OF 57Co , 2015, 1505.00777.

[6]  S. E. Woosley,et al.  The diversity of type Ia supernovae from broken symmetries , 2009, Nature.

[7]  J. Prieto,et al.  A Survey About Nothing: Monitoring a Million Supergiants for Failed Supernovae , 2008, 0802.0456.

[8]  O. Graur,et al.  Progenitor constraints on the Type-Ia supernova SN2011fe from pre-explosion Hubble Space Telescope He ii narrow-band observations , 2014, 1403.1878.

[9]  T. Lauer,et al.  THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. X. ULTRAVIOLET TO INFRARED PHOTOMETRY OF 117 MILLION EQUIDISTANT STARS , 2014, 1409.0899.

[10]  J. Sollerman,et al.  The normal type Ia SN 2003hv out to very late phases , 2009, 0908.0537.

[11]  J. Sollerman,et al.  No trace of a single-degenerate companion in late spectra of supernovae 2011fe and 2014J , 2015, 1502.00589.

[12]  Daniel Kasen,et al.  SEEING THE COLLISION OF A SUPERNOVA WITH ITS COMPANION STAR , 2009, 0909.0275.

[13]  I. Hook,et al.  CONSTRAINING TYPE Ia SUPERNOVAE PROGENITORS FROM THREE YEARS OF SUPERNOVA LEGACY SURVEY DATA , 2011, 1106.4008.

[14]  C. Tao,et al.  Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory , 2013, 1302.1292.

[15]  Tucson,et al.  The performance of the blue prime focus large binocular camera at the large binocular telescope , 2008, 0801.1474.

[16]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[17]  M. Stritzinger,et al.  Late-time emission of type Ia supernovae: optical and near-infrared observations of SN 2001el , 2007, 0705.2381.

[18]  Douglas C. Leonard,et al.  Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra , 2006, 0710.3166.

[19]  Arlin Crotts,et al.  LIGHT ECHOES FROM SUPERNOVA 2014J IN M82 , 2014, 1409.8671.

[20]  M. Pinsonneault,et al.  The Solar Heavy-Element Abundances. I. Constraints from Stellar Interiors , 2005, astro-ph/0511779.

[21]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[22]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[23]  R. Kotak,et al.  Multi-epoch high-resolution spectroscopy of SN 2011fe - Linking the progenitor to its environment , 2011, 1112.0247.

[24]  S. Taubenberger,et al.  Late-time supernova light curves: the effect of internal conversion and Auger electrons , 2009, 0908.0247.

[25]  N. Gehrels,et al.  INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS: APPLICATION TO SN2011fe , 2012, 1202.0741.

[26]  P. Milne,et al.  Late light curves of type ia supernovae , 2001, astro-ph/0104185.

[27]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[28]  W. E. Kerzendorf,et al.  VERY LATE PHOTOMETRY OF SN 2011fe , 2014, The Astrophysical Journal.

[29]  R. Kirshner,et al.  METALLICITY DIFFERENCES IN TYPE Ia SUPERNOVA PROGENITORS INFERRED FROM ULTRAVIOLET SPECTRA , 2013, 1302.4479.

[30]  Andrew E. Dolphin,et al.  WFPC2 Stellar Photometry with HSTphot , 2000, astro-ph/0006217.

[31]  A. B. Danilet,et al.  THE YOUNG AND BRIGHT TYPE IA SUPERNOVA ASASSN-14lp: DISCOVERY, EARLY-TIME OBSERVATIONS, FIRST-LIGHT TIME, DISTANCE TO NGC 4666, AND PROGENITOR CONSTRAINTS , 2015, 1507.04257.

[32]  E. Ofek,et al.  A statistical analysis of circumstellar material in type Ia supernovae , 2013, 1308.3899.

[33]  C. Tao,et al.  CONSTRAINING TYPE Ia SUPERNOVA MODELS: SN 2011fe AS A TEST CASE , 2012, 1203.4839.

[34]  F. Patat Reflections on reflexions — I. Light echoes in Type Ia supernovae , 2005 .

[35]  Rollin C. Thomas,et al.  HUBBLE SPACE TELESCOPE AND GROUND-BASED OBSERVATIONS OF THE TYPE Iax SUPERNOVAE SN 2005hk AND SN 2008A , 2013, 1309.4457.

[36]  C. Kochanek,et al.  TYPE Ia SINGLE DEGENERATE SURVIVORS MUST BE OVERLUMINOUS , 2012, 1205.5028.

[37]  Walter Seifert,et al.  LUCIFER: a Multi-Mode NIR Instrument for the LBT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[38]  T. Thompson ACCELERATING COMPACT OBJECT MERGERS IN TRIPLE SYSTEMS WITH THE KOZAI RESONANCE: A MECHANISM FOR “PROMPT” TYPE Ia SUPERNOVAE, GAMMA-RAY BURSTS, AND OTHER EXOTICA , 2010, 1011.4322.

[39]  B. Shappee,et al.  THE MASS-LOSS-INDUCED ECCENTRIC KOZAI MECHANISM: A NEW CHANNEL FOR THE PRODUCTION OF CLOSE COMPACT OBJECT–STELLAR BINARIES , 2012, 1204.1053.

[40]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[41]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[42]  Xiaofeng Wang,et al.  OPTICAL OBSERVATIONS OF THE TYPE IA SUPERNOVA SN 2011fe IN M101 FOR NEARLY 500 DAYS , 2016, 1602.02951.

[43]  P. Brown,et al.  CONSTRAINTS ON TYPE Ia SUPERNOVA PROGENITOR COMPANIONS FROM EARLY ULTRAVIOLET OBSERVATIONS WITH SWIFT , 2012, 1203.5315.

[44]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[45]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[46]  W. M. Wood-Vasey,et al.  THE INFRARED LIGHT CURVE OF SN 2011fe IN M101 AND THE DISTANCE TO M101 , 2012, 1205.3828.

[47]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[48]  Peter B. Stetson,et al.  ON THE AUTOMATIC DETERMINATION OF LIGHT-CURVE PARAMETERS FOR CEPHEID VARIABLES , 1996 .

[49]  J. Wheeler,et al.  WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE , 2012, 1209.1021.

[50]  Consistent estimates of ⁵⁶Ni yields for type Ia supernovae , 2006, astro-ph/0609232.

[51]  Kevin Krisciunas,et al.  SWIFT ULTRAVIOLET OBSERVATIONS OF SUPERNOVA 2014J IN M82: LARGE EXTINCTION FROM INTERSTELLAR DUST , 2014, 1408.2381.

[52]  The late-time light curve of the type Ia supernova 2000cx , 2004, astro-ph/0409338.

[53]  P. Garnavich,et al.  NO STRIPPED HYDROGEN IN THE NEBULAR SPECTRA OF NEARBY TYPE Ia SUPERNOVA 2011fe , 2012, 1210.3027.

[54]  Wei Zheng,et al.  Twins for life? A comparative analysis of the Type Ia supernovae 2011fe and 2011by , 2014, 1408.2651.

[55]  Keiichi Maeda,et al.  FORMATION OF DUST IN THE EJECTA OF TYPE Ia SUPERNOVAE , 2011, 1105.0973.

[56]  M. Sullivan,et al.  Constraining the progenitor companion of the nearby Type Ia SN 2011fe with a nebular spectrum at +981 d , 2015, 1502.00646.

[57]  J. Wheeler,et al.  Supernovae in binary systems , 1975 .

[58]  Michael P. Rupen,et al.  A DEEP SEARCH FOR PROMPT RADIO EMISSION FROM THERMONUCLEAR SUPERNOVAE WITH THE VERY LARGE ARRAY , 2015, 1510.07662.

[59]  C. Kochanek,et al.  The search for failed supernovae with the Large Binocular Telescope: first candidates , 2014, 1411.1761.

[60]  Ipmu,et al.  Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core , 2015, 1504.04857.

[61]  C. Fransson,et al.  RECONCILING THE INFRARED CATASTROPHE AND OBSERVATIONS OF SN 2011fe , 2015, 1511.00245.

[62]  M. Kilic,et al.  THE ABSENCE OF EX-COMPANIONS IN TYPE Ia SUPERNOVA REMNANTS , 2012, 1205.3168.

[63]  U. Munari,et al.  BVRI lightcurves of supernovae SN 2011fe in M101, SN 2012aw in M95, and SN 2012cg in NGC 4424 , 2012, 1209.4692.

[64]  Stephen Justham,et al.  SINGLE-DEGENERATE TYPE Ia SUPERNOVAE WITHOUT HYDROGEN CONTAMINATION , 2011, 1102.4913.

[65]  B. Shappee,et al.  Rapid Eccentricity Oscillations and the Mergers of Compact Objects in Hierarchical Triples , 2013, 1308.5682.

[66]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[67]  K. Maguire,et al.  Searching for swept-up hydrogen and helium in the late-time spectra of 11 nearby Type Ia supernovae , 2015, 1512.07107.

[68]  J. Prieto,et al.  A STUDY OF CEPHEIDS IN M81 WITH THE LARGE BINOCULAR TELESCOPE (EFFICIENTLY CALIBRATED WITH HUBBLE SPACE TELESCOPE) , 2011, 1103.0549.

[69]  A. Goobar,et al.  Herschel limits on far-infrared emission from circumstellar dust around three nearby type Ia supernovae. , 2012, 1209.1090.

[70]  Peter E. Nugent,et al.  EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe) , 2011, 1109.2912.

[71]  K. Maguire,et al.  Hubble Space Telescope spectra of the type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z < Z⊙ , 2013, 1305.2356.

[72]  Brian J. Williams,et al.  A CHANDRASEKHAR MASS PROGENITOR FOR THE TYPE Ia SUPERNOVA REMNANT 3C 397 FROM THE ENHANCED ABUNDANCES OF NICKEL AND MANGANESE , 2015, 1502.04255.

[73]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[74]  R. Margutti,et al.  EVLA OBSERVATIONS CONSTRAIN THE ENVIRONMENT AND PROGENITOR SYSTEM OF Type Ia SUPERNOVA 2011fe , 2012, 1201.0994.

[75]  K. Z. Stanek,et al.  A NEW CEPHEID DISTANCE TO THE GIANT SPIRAL M101 BASED ON IMAGE SUBTRACTION OF HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS OBSERVATIONS , 2011 .

[76]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[77]  W. Hillebrandt,et al.  NORMAL TYPE Ia SUPERNOVAE FROM VIOLENT MERGERS OF WHITE DWARF BINARIES , 2012, 1201.5123.

[78]  F. Bresolin The Oxygen Abundance in the Inner H II Regions of M101: Implications for the Calibration of Strong-Line Metallicity Indicators , 2006, astro-ph/0610690.

[79]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[80]  Nathaniel R. Butler,et al.  A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe , 2011, 1111.0966.

[81]  P. Garnavich,et al.  THE MID-INFRARED AND OPTICAL DECAY OF SN 2011fe , 2013, 1302.5421.