Distributionally robust fixed interval scheduling on parallel identical machines under uncertain finishing times

Abstract We deal with fixed interval scheduling (FIS) problems on parallel identical machines where the job starting times are given but the finishing times are subject to uncertainty. In the operational problem, we construct a schedule with the highest worst-case probability that it remains feasible, whereas in the tactical problem we are looking for the minimum number of machines to process all jobs given a minimum level for the worst-case probability that the schedule is feasible. Our ambiguity set contains joint delay distributions with a given copula dependence, where a proportion of marginal distributions is stressed and the rest are left unchanged. We derive a trackable reformulation and propose an efficient decomposition algorithm for the operational problem. The algorithm for the tactical FIS is based on solving a sequence of the operational problems. The algorithms are compared on simulated FIS instances in the numerical part.

[1]  Enrico Angelelli,et al.  On the complexity of interval scheduling with a resource constraint , 2011, Theor. Comput. Sci..

[2]  Leo Kroon,et al.  Exact and approximation algorithms for the operational fixed interval scheduling problem , 1995 .

[3]  Deniz Türsel Eliiyi Integrating tactical and operational decisions in fixed job scheduling , 2013 .

[4]  Hamilton Emmons,et al.  Interval Scheduling on identical machines , 1996, J. Glob. Optim..

[5]  Enrico Angelelli,et al.  Optimal interval scheduling with a resource constraint , 2014, Comput. Oper. Res..

[6]  Esther M. Arkin,et al.  Scheduling jobs with fixed start and end times , 1987, Discret. Appl. Math..

[7]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[8]  Joseph Y.-T. Leung,et al.  An Optimal Solution for the Channel-Assignment Problem , 1979, IEEE Transactions on Computers.

[9]  Martin Branda,et al.  KRÁTKÉ POJEDNÁNÍ O PROBLÉMU ROZVRHOVÁNÍ S PŘEDEPSANÝMI ČASY PRACÍ A NÁHODNÝMI PRVKY A NOTE ON FIXED INTERVAL SCHEDULING WITH STOCHASTIC ELEMENTS , 2016 .

[10]  Daniel Kuhn,et al.  Multi-resource allocation in stochastic project scheduling , 2012, Ann. Oper. Res..

[11]  Alexandru I. Tomescu,et al.  Interval scheduling maximizing minimum coverage , 2017, Discret. Appl. Math..

[12]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[13]  T. C. Edwin Cheng,et al.  A graph-theoretic approach to interval scheduling on dedicated unrelated parallel machines , 2014, J. Oper. Res. Soc..

[14]  Bo Chen,et al.  Tactical fixed job scheduling with spread-time constraints , 2014, Comput. Oper. Res..

[15]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[16]  Frits C. R. Spieksma,et al.  Interval scheduling: A survey , 2007 .

[17]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[18]  Martin Branda,et al.  Fixed interval scheduling under uncertainty - A tabu search algorithm for an extended robust coloring formulation , 2016, Comput. Ind. Eng..

[19]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[20]  Shih-Wei Lin,et al.  Minimizing shifts for personnel task scheduling problems: A three-phase algorithm , 2014, Eur. J. Oper. Res..

[21]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[22]  Pieter Smet,et al.  The shift minimisation personnel task scheduling problem: a new hybrid approach and computational insights , 2014 .

[23]  Leo G. Kroon,et al.  Exact and Approximation Algorithms for the Tactical Fixed Interval Scheduling Problem , 1997, Oper. Res..

[24]  Martin Branda,et al.  Flow-based formulations for operational fixed interval scheduling problems with random delays , 2017, Comput. Manag. Sci..

[25]  Daniel Kuhn,et al.  Distributionally robust joint chance constraints with second-order moment information , 2011, Mathematical Programming.

[26]  T. C. Edwin Cheng,et al.  Fixed interval scheduling: Models, applications, computational complexity and algorithms , 2007, Eur. J. Oper. Res..

[27]  Daniel Kuhn,et al.  A distributionally robust perspective on uncertainty quantification and chance constrained programming , 2015, Mathematical Programming.

[28]  Raymond Chiong,et al.  Distributionally robust single machine scheduling with risk aversion , 2017, Eur. J. Oper. Res..

[29]  U. Stadtmüller,et al.  Estimating Archimedean Copulas in High Dimensions , 2012 .

[30]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .