A Global Root-Zone Soil Moisture Analysis Using Simulated L-band Brightness Temperature in Preparation for the Hydros Satellite Mission

Abstract The aim of this study is to test a land data assimilation prototype for the production of a global daily root-zone soil moisture analysis. This system can assimilate microwave L-band satellite observations such as those from the future Hydros NASA mission. The experiments are considered in the framework of the Interaction Soil Biosphere Atmosphere (ISBA) land surface scheme used operationally at the Meteorological Service of Canada for regional and global weather forecasting. A land surface reference state is obtained after a 1-yr global land surface simulation, forced by near-surface atmospheric fields provided by the Global Soil Wetness Project, second initiative (GSWP-2). A radiative transfer model is applied to simulate the microwave L-band passive emission from the surface. The generated brightness temperature observations are distributed in space and time according to the satellite trajectory specified by the Hydros mission. The impact of uncertainties related to the satellite observations,...

[1]  Miller,et al.  The Anomalous Rainfall over the United States during July 1993: Sensitivity to Land Surface Parameterization and Soil Moisture Anomalies , 1996 .

[2]  J. Mahfouf,et al.  The ISBA land surface parameterisation scheme , 1996 .

[3]  D. D. Mueller,et al.  Fundamentals of Astrodynamics , 1971 .

[4]  Yann Kerr,et al.  Two-year global simulation of L-band brightness temperatures over land , 2003, IEEE Trans. Geosci. Remote. Sens..

[5]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[7]  J. Pailleux,et al.  Variational surface analysis from screen level atmospheric parameters , 1999 .

[8]  A. J. Dolman,et al.  The Pilot Phase of the Global Soil Wetness Project , 1999 .

[9]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[10]  C. Swift,et al.  An improved model for the dielectric constant of sea water at microwave frequencies , 1977, IEEE Journal of Oceanic Engineering.

[11]  R. Hess,et al.  Assimilation of screen-level observations by variational soil moisture analysis , 2001 .

[12]  J. Noilhan,et al.  GCM grid-scale evaporation from mesoscale modeling , 1995 .

[13]  Taikan Oki,et al.  The Second Global Soil Wetness Project (GSWP-2) , 2003 .

[14]  Y. Kerr,et al.  A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space , 1990 .

[15]  Jiancheng Shi,et al.  Comparison of soil moisture retrieval algorithms using simulated HYDROS brightness temperatures , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Jean-Christophe Calvet,et al.  Retrieving the Root-Zone Soil Moisture from Surface Soil Moisture or Temperature Estimates: A Feasibility Study Based on Field Measurements , 1998 .

[17]  Clemens Simmer,et al.  Up‐scaling effects in passive microwave remote sensing: ESTAR 1.4 GHz measurements during SGP '97 , 1999 .

[18]  Bertrand Timbal,et al.  Does Soil Moisture Influence Climate Variability and Predictability over Australia , 2002 .

[19]  Urs Wegmüller,et al.  Rough bare soil reflectivity model , 1999, IEEE Trans. Geosci. Remote. Sens..

[20]  N. Skou Faraday rotation and L band oceanographic measurements , 2003 .

[21]  Dara Entekhabi,et al.  An ensemble‐based reanalysis approach to land data assimilation , 2005 .

[22]  Yann Kerr,et al.  The hydrosphere State (hydros) Satellite mission: an Earth system pathfinder for global mapping of soil moisture and land freeze/thaw , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Philippe Courtier,et al.  Use of cloud‐cleared radiances in three/four‐dimensional variational data assimilation , 1994 .

[24]  A. Holtslag,et al.  Influence of Soil Moisture on Boundary Layer Cloud Development , 2004 .

[25]  Fanglin Yang,et al.  Potential Predictability of U.S. Summer Climate with "Perfect" Soil Moisture , 2004 .

[26]  Y. Kerr,et al.  Soil moisture and temperature profile effects on microwave emission at low frequencies , 1995 .

[27]  S. R. Cvetkovic,et al.  Spacecraft design considerations for small satellite remote sensing , 1993 .

[28]  T. Jackson,et al.  Vegetative and Atmospheric Corrections for the Soil Moisture Retrieval from Passive Microwave Remote Sensing Data: Results from the Southern Great Plains Hydrology Experiment 1997 , 2001 .

[29]  G. Balsamo,et al.  A simplified variational analysis scheme for soil moisture: Developments at Meteo-France and MSC , 2005 .

[30]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[31]  Matthias Drusch,et al.  The Usage of Screen-Level Parameters and Microwave Brightness Temperature for Soil Moisture Analysis , 2004 .

[32]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation , 1998 .

[33]  Stéphane Bélair,et al.  Operational Implementation of the ISBA Land Surface Scheme in the Canadian Regional Weather Forecast Model. Part II: Cold Season Results , 2003 .

[34]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[35]  J. Mahfouf,et al.  Soil moisture analysis combining screen‐level parameters and microwave brightness temperature: A test with field data , 2003 .

[36]  J. Noilhan,et al.  A simplified bi‐dimensional variational analysis of soil moisture from screen‐level observations in a mesoscale numerical weather‐prediction model , 2004 .

[37]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[38]  P. Milly,et al.  A Model-Based Investigation of Soil Moisture Predictability and Associated Climate Predictability , 2002 .

[39]  Paul R. Houser,et al.  Requirements of a global near-surface soil moisture satellite mission: accuracy, repeat time, and spatial resolution , 2004 .

[40]  E. Bazile,et al.  Implementation of a New Assimilation Scheme for Soil and Surface Variables in a Global NWP Model , 2000 .

[41]  Jiancheng Shi,et al.  An observing system simulation experiment for hydros radiometer-only soil moisture products , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[42]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results , 1998 .

[43]  David A. Landgrebe,et al.  A model-based mixture-supervised classification approach in hyperspectral data analysis , 2002, IEEE Trans. Geosci. Remote. Sens..

[44]  Jean-François Mahfouf,et al.  Analysis of Soil Moisture from Near-Surface Parameters: A Feasibility Study , 1991 .

[45]  E. Youngs,et al.  Fundamentals of Soil Physics. , 1982 .

[46]  Wade T. Crow,et al.  Using a Microwave Emission Model to Estimate Soil Moisture from ESTAR Observations during SGP99 , 2004 .

[47]  Jean-Pierre Wigneron,et al.  Simulating L-band emission of forests in view of future satellite applications , 2002, IEEE Trans. Geosci. Remote. Sens..

[48]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[49]  Daniel Hillel,et al.  Applications of soil physics , 1980 .

[50]  J. Deardorff Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation , 1978 .

[51]  Matthias Drusch,et al.  The impact of the SSM/I antenna gain function on land surface parameter retrieval , 1999 .

[52]  Jean-Christophe Calvet,et al.  From Near-Surface to Root-Zone Soil Moisture Using Year-Round Data , 2000 .

[53]  Hans J. Liebe,et al.  MPM—An atmospheric millimeter-wave propagation model , 1989 .

[54]  Clemens Simmer,et al.  Effects of the Near-Surface Soil Moisture Profile on the Assimilation of L-band Microwave Brightness Temperature , 2006 .

[55]  Thomas Wilheit,et al.  Radiative Transfer in a Plane Stratified Dielectric , 1975, IEEE Transactions on Geoscience Electronics.