Modelling of morphology and proton transport in PFSA membranes.

Computational modelling studies of the structure of perfluorosulfonic acid (PFSA) ionomer membranes consistently exhibit a nanoscopic phase-separated morphology in which the ionic side chains and aqueous counterions segregate from the fluorocarbon backbone to form clusters or channels. Although these investigations do not unambiguously predict the size or shape of the clusters, and whether or not the channels percolate the matrix or if the connections between them are more transient, the sequence of co-monomers along the main chain appears strongly to influence the domain size of the ionic regions, with more blocky sequences giving rise to larger domain sizes. The fundamental insight that substantial rearrangement of the sulfonic acid terminated side chains and fluorocarbon backbone takes place during swelling or shrinkage is borne out by both molecular and mesoscale simulations of model PFSA polymers, along with ab initio electronic structure calculations of minimally hydrated oligomeric fragments. Molecular-level modelling of proton transport in PFSA membranes attests to the complexity of the underlying mechanisms and the need to examine the chemical and physical processes at several distinct time and length scales. These investigations have revealed that the conformation of the fluorocarbon backbone, flexibility of the sidechains, and degree of aggregation and association of the sulfonic acid groups under minimally hydrated conditions collectively control the dissociation of the protons and the formation of Zundel and Eigen cations. The former appear to be the dominant charge carriers when the limiting water content allows only for the formation of a contact ion pair with the tethered sulfonate anion. As the water content increases, solvent-separated Eigen ions begin to appear, indicating that the dominant mechanism for diffusion of protons occurs over a region approximately 4 A away from the sulfonate groups. Finally, both the vehicular and Grotthuss shuttling mechanisms contribute to the mobility of the protons but, surprisingly, they are not always correlated, resulting in a lower overall diffusion coefficient. In summary, as the preceding observations indicate, the state of computational modelling of PFSA membranes has progressed sufficiently over the last decade to enable its use as a powerful predictive tool with which to guide the process of designing novel membrane materials for fuel cell applications.

[1]  S. Paddison,et al.  The effects of backbone conformation on hydration and proton transfer in the 'short-side-chain' perfluorosulfonic acid membrane , 2006 .

[2]  M. Eikerling,et al.  Hydrated arrays of acidic surface groups as model systems for interfacial structure and mechanisms in PEMs. , 2006, The journal of physical chemistry. B.

[3]  Matt K. Petersen,et al.  Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane nafion. , 2006, The journal of physical chemistry. B.

[4]  S. Paddison,et al.  On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes. , 2006, Physical chemistry chemical physics : PCCP.

[5]  S. Woutersen,et al.  Ultrafast vibrational and structural dynamics of the proton in liquid water. , 2006, Physical review letters.

[6]  Yue Qi,et al.  Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. , 2006, The Journal of chemical physics.

[7]  S. Paddison,et al.  Effects of dielectric saturation and ionic screening on the proton self-diffusion coefficients in perfluorosulfonic acid membranes. , 2005, The Journal of chemical physics.

[8]  Vincenzo Arcella,et al.  Hyflon Ion Membranes for Fuel Cells , 2005 .

[9]  Vincenzo Arcella,et al.  Proton exchange membranes based on the short-side-chain perfluorinated ionomer , 2005 .

[10]  S. Tsuzuki,et al.  Molecular dynamics study of the methanol effect on the membrane morphology of perfluorosulfonic ionomers. , 2005, The journal of physical chemistry. B.

[11]  C. Hartnig,et al.  Aqueous pore structure and proton dynamics in solvated Nafion membranes , 2005 .

[12]  S. Paddison,et al.  Molecular modeling of the short-side-chain perfluorosulfonic acid membrane. , 2005, The journal of physical chemistry. A.

[13]  Gregory A Voth,et al.  A linear-scaling self-consistent generalization of the multistate empirical valence bond method for multiple excess protons in aqueous systems. , 2005, The Journal of chemical physics.

[14]  G. Gebel,et al.  Neutron and X‐ray Scattering: Suitable Tools for Studying Ionomer Membranes , 2005 .

[15]  Matt K. Petersen,et al.  Excess proton solvation and delocalization in a hydrophilic pocket of the proton conducting polymer membrane nafion. , 2005, The journal of physical chemistry. B.

[16]  S. Tsuzuki,et al.  Molecular dynamics simulation of swollen membrane of perfluorinated ionomer. , 2005, The journal of physical chemistry. B.

[17]  W. Goddard,et al.  Effect of monomeric sequence on nanostructure and water dynamics in Nafion 117 , 2004 .

[18]  Tatsuhiro Okada,et al.  Mechanisms of Ion and Water Transport in Perfluorosulfonated Ionomer Membranes for Fuel Cells , 2004 .

[19]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[20]  Gérard Gebel,et al.  Fibrillar structure of Nafion: Matching fourier and real space studies of corresponding films and solutions , 2004 .

[21]  S. Paddison,et al.  Structure and dielectric saturation of water in hydrated polymer electrolyte membranes: Inclusion of the internal field energy , 2004 .

[22]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[23]  S. Tsuzuki,et al.  Intermolecular interaction between the pendant chain of perfluorinated ionomer and water , 2004 .

[24]  L. Rubatat,et al.  Orientation of Drawn Nafion at Molecular and Mesoscopic Scales , 2004 .

[25]  S. Paddison,et al.  The phenomena of dielectric saturation in the water domains of polymer electrolyte membranes , 2004 .

[26]  W. Goddard,et al.  Nanophase-Segregation and Transport in Nafion 117 from Molecular Dynamics Simulations: Effect of Monomeric Sequence , 2004 .

[27]  E. Spohr Molecular Dynamics Simulations of Proton Transfer in a Model Nafion Pore , 2004 .

[28]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[29]  Stephen J. Paddison,et al.  Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes , 2003 .

[30]  Deborah J. Jones,et al.  Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells , 2003 .

[31]  H. D. Cochran,et al.  On the development of a general force field for the molecular simulation of perfluoroethers , 2003 .

[32]  W. Goddard,et al.  The Source of Helicity in Perfluorinated N-Alkanes , 2003 .

[33]  Steven J. Plimpton,et al.  Equilibration of long chain polymer melts in computer simulations , 2003, cond-mat/0306026.

[34]  S. Hyodo,et al.  A Computer Simulation Study of the Mesoscopic Structure of the Polyelectrolyte Membrane Nafion , 2003 .

[35]  Thom Vreven,et al.  Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints , 2003, J. Comput. Chem..

[36]  Jens Ulstrup,et al.  Kinetics of Proton Transport in Water , 2003 .

[37]  Christoph Dellago,et al.  Proton transport through water-filled carbon nanotubes. , 2003, Physical review letters.

[38]  Satoru Yamamoto,et al.  Lattice-Boltzmann simulations of flow through NAFION polymer membranes , 2003 .

[39]  M. Eikerling,et al.  Defect structure for proton transport in a triflic acid monohydrate solid , 2003 .

[40]  A. Kornyshev,et al.  Enhancing Proton Mobility in Polymer Electrolyte Membranes: Lessons from Molecular Dynamics Simulations , 2002 .

[41]  K. Kreuer On solids with liquidlike properties and the challenge to develop new proton-conducting separator materials for intermediate-temperature fuel cells. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  Gregory A. Voth,et al.  A second generation multistate empirical valence bond model for proton transport in aqueous systems , 2002 .

[43]  G. Gebel,et al.  Caractérisation de la structure des membranes ionomères (NAFION®) par diffusion de rayons X aux petits angles , 2002 .

[44]  H. Ploehn,et al.  Phase Behavior and Microdomain Structure in Perfluorosulfonated Ionomers via Self-Consistent Mean Field Theory , 2002 .

[45]  Gérard Gebel,et al.  Evidence of elongated polymeric aggregates in Nafion , 2002 .

[46]  S. Paddison,et al.  The nature of proton transport in fully hydrated Nafion , 2002 .

[47]  S. Paddison,et al.  Theoretically computed proton diffusion coefficients in hydrated PEEKK membranes , 2002 .

[48]  O. Diat,et al.  A new insight into Nafion structure , 2002 .

[49]  K. Morokuma,et al.  Effects of the protein environment on the structure and energetics of active sites of metalloenzymes. ONIOM study of methane monooxygenase and ribonucleotide reductase. , 2002, Journal of the American Chemical Society.

[50]  S. Paddison,et al.  Proton friction and diffusion coefficients in hydrated polymer electrolyte membranes: Computations with a non-equilibrium statistical mechanical model , 2001 .

[51]  S. Paddison,et al.  A statistical mechanical model for the calculation of the permittivity of water in hydrated polymer electrolyte membrane pores , 2001 .

[52]  A. Neimark,et al.  Molecular Dynamics Simulation of Microstructure and Molecular Mobilities in Swollen Nafion Membranes , 2001 .

[53]  Aleksey Vishnyakov and,et al.  Molecular Dynamics Simulation of Nafion Oligomer Solvation in Equimolar Methanol−Water Mixture , 2001 .

[54]  S. Paddison,et al.  Variation of the Dissociation Constant of Triflic Acid with Hydration , 2001 .

[55]  A. A. Kornyshev,et al.  Proton transport in polarizable water , 2001 .

[56]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[57]  S. Hanna,et al.  The swelling behaviour of perfluorinated ionomer membranes in ethanol/water mixtures , 2001 .

[58]  C. Bauschlicher,et al.  High Coverages of Hydrogen on a (10,0) Carbon Nanotube , 2001 .

[59]  L. Carrette,et al.  Fuel cells: principles, types, fuels, and applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[60]  K. Sanui,et al.  Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers , 2000 .

[61]  Gregory A. Voth,et al.  The Mechanism of Hydrated Proton Transport in Water , 2000 .

[62]  K. Kreuer On the complexity of proton conduction phenomena , 2000 .

[63]  G. Gebel,et al.  Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution , 2000 .

[64]  A. Khokhlov,et al.  Self-organization of comblike copolymers with end-functionalized side chains: A cellular-automaton-based simulation , 2000 .

[65]  G. Gebel,et al.  Small-Angle Scattering Study of Short Pendant Chain Perfuorosulfonated Ionomer Membranes , 2000 .

[66]  C. Bauschlicher Hydrogen and fluorine binding to the sidewalls of a (10,0) carbon nanotube , 2000 .

[67]  S. Hanna,et al.  Interpretation of the Small-Angle X-ray Scattering from Swollen and Oriented Perfluorinated Ionomer Membranes , 2000 .

[68]  Aleksey Vishnyakov and,et al.  Molecular Simulation Study of Nafion Membrane Solvation in Water and Methanol , 2000 .

[69]  Stephen J. Paddison,et al.  A statistical mechanical model of proton and water transport in a proton exchange membrane , 2000 .

[70]  S. Hanna,et al.  A model-independent maximum-entropy method for the inversion of small-angle X-ray diffraction patterns , 1999 .

[71]  Gregory A. Voth,et al.  The computer simulation of proton transport in water , 1999 .

[72]  K. Kreuer Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides , 1999 .

[73]  M. Elomaa,et al.  Modelling a polyelectrolyte system in water to estimate the ion-conductivity , 1999 .

[74]  D. B. Holt,et al.  Modeling of helix reversal defects in polytetrafluoroethylene: I. Force field development and molecular mechanics calculations , 1999 .

[75]  Natasha Maurits,et al.  The MesoDyn project: software for mesoscale chemical engineering , 1999 .

[76]  M. Parrinello,et al.  The nature of the hydrated excess proton in water , 1999, Nature.

[77]  M. Yoshitake,et al.  Characterization of Flemion® membranes for PEFC , 1998 .

[78]  A. Kornyshev,et al.  Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes , 1998 .

[79]  Gregory A. Voth,et al.  Multistate Empirical Valence Bond Model for Proton Transport in Water , 1998 .

[80]  H. D. Cochran,et al.  Intermolecular potentials and vapor-liquid phase equilibria of perfluorinated alkanes , 1998 .

[81]  Ulrich Stimming,et al.  ELECTROPHYSICAL PROPERTIES OF POLYMER ELECTROLYTE MEMBRANES : A RANDOM NETWORK MODEL , 1997 .

[82]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[83]  C. Heitner-Wirguin Recent advances in perfluorinated ionomer membranes : structure, properties and applications , 1996 .

[84]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[85]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[86]  D. B. Holt,et al.  Fluoropolymer force fields derived from semiempirical molecular orbital calculations , 1996 .

[87]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[88]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[89]  Kari Laasonen,et al.  Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water , 1995 .

[90]  Y. Dyakov,et al.  Molecular dynamics study of the cations, water molecules, and polymer chains in Nafion type membranes , 1995 .

[91]  D. J. Mitchell,et al.  Dressed‐ion theory for electrolyte solutions: A Debye–Hückel‐like reformulation of the exact theory for the primitive model , 1994 .

[92]  F. Büchi,et al.  Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle X-ray scattering , 1994 .

[93]  M. Okuda,et al.  The preparation of polymer melt samples for computer simulation studies , 1994 .

[94]  Attard Asymptotic analysis of primitive model electrolytes and the electrical double layer. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[95]  J. Koelman,et al.  Dynamic simulations of hard-sphere suspensions under steady shear , 1993 .

[96]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[97]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[98]  Mark W. Verbrugge,et al.  Analysis of Promising Perfluorosulfonic Acid Membranes for Fuel‐Cell Electrolytes , 1990 .

[99]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[100]  Robert B. Moore,et al.  Morphology and chemical properties of the Dow perfluorosulfonate ionomers , 1989 .

[101]  M. Verbrugge,et al.  The electric-potential profile in ion-exchange membrane pores , 1989 .

[102]  Kurt Kremer,et al.  The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions , 1988 .

[103]  U. Singh,et al.  A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl− exchange reaction and gas phase protonation of polyethers , 1986 .

[104]  K. Mauritz,et al.  A water sorption isotherm model for ionomer membranes with cluster morphologies , 1985 .

[105]  A. Hopfinger,et al.  Simple model for clustering and ionic transport in ionomer membranes , 1984 .

[106]  T. Gierke,et al.  Ion transport and clustering in nafion perfluorinated membranes , 1983 .

[107]  H. Yeager,et al.  Cation and Water Diffusion in Nafion Ion Exchange Membranes: Influence of Polymer Structure , 1981 .

[108]  H. Kawai,et al.  Small-angle x-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima , 1981 .

[109]  A. Eisenberg,et al.  Physical properties and supermolecular structure of perfluorinated ion‐containing (nafion) polymers , 1977 .

[110]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1970 .

[111]  A. Pal,et al.  CATION EXCHANGE POLYMERIC MEMBRANES FOR FUEL CELLS , 2006 .

[112]  Hadas Lapid,et al.  A bond-order analysis of the mechanism for hydrated proton mobility in liquid water. , 2005, The Journal of chemical physics.

[113]  Simon Hanna,et al.  Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes , 1999 .

[114]  E. Michaelides,et al.  Transport processes of water and protons through micropores , 1998 .

[115]  J. Bontha,et al.  WATER ORIENTATION AND ION SOLVATION EFFECTS DURING MULTICOMPONENT SALT PARTITIONING IN A NAFION CATION EXCHANGE MEMBRANE , 1994 .

[116]  Stuart L. Cooper,et al.  Microstructure of ionomers: interpretation of small-angle x-ray scattering data , 1983 .

[117]  H. Kawai,et al.  Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum , 1982 .

[118]  T. Gierke,et al.  Elastic theory for ionic clustering in perfluorinated ionomers , 1982 .