A simulated annealing algorithm for determining the thickness of a graph

The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. Determining the thickness of a given graph is known to be an NP-complete problem.In this paper we introduce a new heuristic algorithm for determining the thickness of a graph. Our algorithm is based on the simulated annealing optimization scheme. We compare the quality of the solutions and running times of our algorithm against previously tested heuristic algorithms. We show that the simulated annealing is a fast and efficient method to obtain good approximations for the thickness of a graph.We also give a new upper bound for the thickness of complete tripartite graphs, whose vertex sets are of equal size.

[1]  M. Kleinert Die dicke des n-dimensionalen Würfel-graphen , 1967 .

[2]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[3]  John H. Halton,et al.  On the thickness of graphs of given degree , 1991, Inf. Sci..

[4]  Colin Cooper On the Trickness of Sparse Random Graphs , 1992, Comb. Probab. Comput..

[5]  Edward R. Scheinerman,et al.  On the thickness and arboricity of a graph , 1991, J. Comb. Theory, Ser. B.

[6]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[7]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[8]  Robert J. Cimikowski,et al.  On Heuristics for Determining the Thickness of a Graph , 1995, Inf. Sci..

[9]  Erkki Mäkinen,et al.  A genetic algorithm for determining the thickness of a graph , 2001, Inf. Sci..

[10]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[11]  Michael Jünger,et al.  Maximum planar subgraphs and nice embeddings: Practical layout tools , 1996, Algorithmica.

[12]  Koichi Yamazaki,et al.  Worst case analysis of a greedy algorithm for graph thickness , 2003, Inf. Process. Lett..

[13]  G. Kant An O(n2) maximal planarization algorithm based on PQ-trees , 1992 .

[14]  R. K. Guy Combinatorics: Outerthickness and outercoarseness of graphs , 1974 .

[15]  David Eppstein,et al.  Geometric Thickness of Complete Graphs , 1998, Graph Drawing.

[16]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[17]  Annegret Liebers,et al.  Journal of Graph Algorithms and Applications Planarizing Graphs — a Survey and Annotated Bibliography , 2022 .

[18]  Anthony Mansfield,et al.  Determining the thickness of graphs is NP-hard , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[20]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[21]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[22]  Robert E. Tarjan,et al.  An O(m log n)-Time Algorithm for the Maximal Planar Subgraph Problem , 1992, SIAM J. Comput..

[23]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[24]  Michael H. Goldwasser,et al.  Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, Proceedings of a DIMACS Workshop, USA, 1999 , 2002, Data Structures, Near Neighbor Searches, and Methodology.

[25]  L. Beineke,et al.  The Thickness of the Complete Graph , 1965, Canadian Journal of Mathematics.

[26]  Petra Mutzel,et al.  The Thickness of Graphs: A Survey , 1998, Graphs Comb..

[27]  J. Moon,et al.  On the thickness of the complete bipartite graph , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  László A. Székely,et al.  A note on Halton's conjecture , 2004, Inf. Sci..