A new GROMOS force field for hexopyranose‐based carbohydrates

A new parameter set (referred to as 45A4) is developed for the explicit‐solvent simulation of hexopyranose‐based carbohydrates. This set is compatible with the most recent version of the GROMOS force field for proteins, nucleic acids, and lipids, and the SPC water model. The parametrization procedure relies on: (1) reassigning the atomic partial charges based on a fit to the quantum‐mechanical electrostatic potential around a trisaccharide; (2) refining the torsional potential parameters associated with the rotations of the hydroxymethyl, hydroxyl, and anomeric alkoxy groups by fitting to corresponding quantum‐mechanical profiles for hexopyranosides; (3) adapting the torsional potential parameters determining the ring conformation so as to stabilize the (experimentally predominant) 4C1 chair conformation. The other (van der Waals and nontorsional covalent) parameters and the rules for third and excluded neighbors are taken directly from the most recent version of the GROMOS force field (except for one additional exclusion). The new set is general enough to define parameters for any (unbranched) hexopyranose‐based mono‐, di‐, oligo‐ or polysaccharide. In the present article, this force field is validated for a limited set of monosaccharides (α‐ and β‐D‐glucose, α‐ and β‐D‐galactose) and disaccharides (trehalose, maltose, and cellobiose) in solution, by comparing the results of simulations to available experimental data. More extensive validation will be the scope of a forthcoming article. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1400–1412, 2005

[1]  Chris Oostenbrink,et al.  An improved nucleic acid parameter set for the GROMOS force field , 2005, J. Comput. Chem..

[2]  Roland Stenutz,et al.  Correlated C-C and C-O bond conformations in saccharide hydroxymethyl groups: parametrization and application of redundant 1H-1H, 13C-1H, and 13C-13C NMR J-couplings. , 2004, Journal of the American Chemical Society.

[3]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[4]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[5]  P. Hünenberger,et al.  pH-Dependent Stability of a Decalysine α-Helix Studied by Explicit-Solvent Molecular Dynamics Simulations at Constant pH , 2004 .

[6]  Wilfred F van Gunsteren,et al.  Effect of methylation on the stability and solvation free energy of amylose and cellulose fragments: a molecular dynamics study. , 2004, Carbohydrate Research.

[7]  U. Kaatze,et al.  Conformational kinetics of disaccharides in aqueous solutions. , 2004, The Journal of chemical physics.

[8]  Serge Stoll,et al.  Explicit-Solvent Molecular Dynamics Simulations of the β(1→3)- and β(1→6)-Linked Disaccharides β-Laminarabiose and β-Gentiobiose in Water , 2004 .

[9]  Lars Olsen,et al.  Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations. , 2004, Carbohydrate research.

[10]  Roberto D Lins,et al.  Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. , 2004, Biophysical journal.

[11]  Frank A. Momany,et al.  B3LYP/6-311++G** study of α- and β-d-glucopyranose and 1,5-anhydro-d-glucitol: 4C1 and 1C4 chairs, 3,OB and B3,O boats, and skew-boat conformations , 2004 .

[12]  Robert J Woods,et al.  Computational carbohydrate chemistry: what theoretical methods can tell us , 1998, Glycoconjugate Journal.

[13]  W. Saenger,et al.  A molecular dynamics simulation of crystalline α-cyclodextrin hexahydrate , 1987, European Biophysics Journal.

[14]  J. Marth,et al.  A genetic approach to Mammalian glycan function. , 2003, Annual review of biochemistry.

[15]  Paramita Dasgupta,et al.  NMR and modelling studies of disaccharide conformation. , 2003, Carbohydrate research.

[16]  D. Peter Tieleman,et al.  A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field , 2003, European Biophysics Journal.

[17]  H. P. Ramesh,et al.  Carbohydrates—The Renewable Raw Materials of High Biotechnological Value , 2003, Critical reviews in biotechnology.

[18]  Wilfred F. van Gunsteren,et al.  An improved OPLS–AA force field for carbohydrates , 2002, J. Comput. Chem..

[19]  Kevin J. Naidoo,et al.  Carbohydrate solution simulations: Producing a force field with experimentally consistent primary alcohol rotational frequencies and populations , 2002, J. Comput. Chem..

[20]  J. Perkins,et al.  Carbohydrate Hydrogen-Bonding Cooperativity − Intramolecular Hydrogen Bonds and Their Cooperative Effect on Intermolecular Processes − Binding to a Hydrogen-Bond Acceptor Molecule , 2002 .

[21]  Igor Tvaroska,et al.  Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides. , 2002, Carbohydrate research.

[22]  Raymond A Dwek,et al.  Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. , 2002, Chemical reviews.

[23]  Karl N. Kirschner,et al.  Solvent interactions determine carbohydrate conformation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Wilfred F. van Gunsteren,et al.  An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase , 2001, J. Comput. Chem..

[25]  H. Sugiyama,et al.  A study of the conformation of β-1,4-linked glucose oligomers, cellobiose to cellohexaose, in solution , 2000 .

[26]  M. Brochier-Salon,et al.  Conformational analysis of 6‐deoxy‐6‐iodo‐D‐glucose in aqueous solution , 2000 .

[27]  J. Duus,et al.  Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. , 2000, Chemical reviews.

[28]  Lukas D. Schuler,et al.  On the Choice of Dihedral Angle Potential Energy Functions for n-Alkanes , 2000 .

[29]  R. Woods,et al.  Restrained electrostatic potential atomic partial charges for condensed-phase simulations of carbohydrates. , 2000, Theochem.

[30]  J. L. Willett,et al.  Computational studies on carbohydrates: in vacuo studies using a revised AMBER force field, AMB99C, designed for alpha-(1-->4) linkages. , 2000, Carbohydrate research.

[31]  Edward M. Eyring,et al.  Molecular Dynamics and Kinetics of Monosaccharides in Solution. A Broadband Ultrasonic Relaxation Study , 2000 .

[32]  Jan Kroon,et al.  Improved carbohydrate force field for gromos: ring and hydroxymethyl group conformations and exo-anomeric effect , 1999 .

[33]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[34]  S. Pérez,et al.  Shapes and interactions of polysaccharide chains , 1999 .

[35]  P. Finch Carbohydrates : structures, syntheses, and dynamics , 1999 .

[36]  Kjeld Rasmussen,et al.  A comparison and chemometric analysis of several molecular mechanics force fields and parameter sets applied to carbohydrates , 1998 .

[37]  T. Bruce Grindley,et al.  Effect of Solvation on the Rotation of Hydroxymethyl Groups in Carbohydrates , 1998 .

[38]  Donald G. Truhlar,et al.  Factors controlling relative stability of anomers and hydroxymethyl conformers of glucopyranose , 1998, J. Comput. Chem..

[39]  Peter A. Kollman,et al.  Use of Locally Enhanced Sampling in Free Energy Calculations: Testing and Application to the α → β Anomerization of Glucose , 1998 .

[40]  Norman L. Allinger,et al.  Theoretical Studies of the Potential Energy Surfaces and Compositions of the d-Aldo- and d-Ketohexoses , 1998 .

[41]  Michele Parrinello,et al.  Glucose in Aqueous Solution by First Principles Molecular Dynamics , 1998 .

[42]  William L. Jorgensen,et al.  OPLS all‐atom force field for carbohydrates , 1997 .

[43]  J. Lehmann Carbohydrates: Structure and Biology , 1997 .

[44]  J. Vliegenthart,et al.  Estimation of the persistence length of polymers by MD simulations on small fragments in solution. Application to cellulose , 1997 .

[45]  A. Imberty,et al.  Oligosaccharide structures: theory versus experiment. , 1997, Current opinion in structural biology.

[46]  C. Vicent,et al.  NMR experiments for the detection of NOEs and scalar coupling constants between equivalent protons in trehalose-containing molecules , 1997 .

[47]  J. Kroon,et al.  Molecular dynamics study of conformational equilibria in aqueous d-glucose and d-galactose , 1997 .

[48]  I. Tvaroška,et al.  Ab Initio Molecular Orbital Calculation of Carbohydrate Model Compounds. 6. The Gauche Effect and Conformations of the Hydroxymethyl and Methoxymethyl Groups , 1997 .

[49]  Patrick Berthault,et al.  EVIDENCE OF CONFORMATIONAL HETEROGENEITY FOR CARBOHYDRATE MIMETICS. NMR STUDY OF METHYL BETA -C-LACTOSIDE IN AQUEOUS SOLUTION , 1997 .

[50]  Udo Kaatze,et al.  Ultrasonic relaxation and fast chemical kinetics of some carbohydrate aqueous solutions , 1997 .

[51]  G. Batta,et al.  Temperature dependence of molecular conformation, dynamics, and chemical shift anisotropy of α,α-trehalose in D2O by NMR relaxation , 1997 .

[52]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[53]  Krisztina Éliás,et al.  Relative stability of 1C4 and 4C1 chair forms of β-d-glucose: a density functional study , 1996 .

[54]  Karl-Heinz Ott,et al.  Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations , 1996, J. Comput. Chem..

[55]  Raymond A. Dwek,et al.  Glycobiology: Toward Understanding the Function of Sugars. , 1996, Chemical reviews.

[56]  Jürgen Brickmann,et al.  Force field parameters for carbohydrates , 1996, J. Comput. Chem..

[57]  Hanoch Senderowitz,et al.  Carbohydrates: United Atom AMBER* Parameterization of Pyranoses and Simulations Yielding Anomeric Free Energies , 1996 .

[58]  Alan E. Mark,et al.  The GROMOS96 Manual and User Guide , 1996 .

[59]  James W. Brown,et al.  AB INITIO STUDIES OF THE EXOCYCLIC HYDROXYMETHYL ROTATIONAL SURFACE IN ALPHA -D-GLUCOPYRANOSE , 1996 .

[60]  Peter A. Kollman,et al.  Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins , 1995, J. Comput. Chem..

[61]  Donald G. Truhlar,et al.  Relative stability of alternative chair forms and hydroxymethyl conformations of β-d-glucopyranose , 1995 .

[62]  P. Grootenhuis,et al.  Parametrization and application of CHEAT95, and extended atom force field for hydrated oligosaccharides , 1995 .

[63]  John W. Brady,et al.  Use of Umbrella Sampling in the Calculation of the Potential of Mean Force for Maltose in Vacuum From Molecular Dynamics Simulations , 1995 .

[64]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[65]  Robert J. Woods,et al.  Molecular Mechanical and Molecular Dynamic Simulations of Glycoproteins and Oligosaccharides. 1. GLYCAM_93 Parameter Development , 1995 .

[66]  Kenneth M. Merz,et al.  A force field for monosaccharides and (1 → 4) linked polysaccharides , 1994, J. Comput. Chem..

[67]  Jens Ø. Duus,et al.  A Conformational Study of Hydroxymethyl Groups in Carbohydrates Investigated by 1H NMR Spectroscopy , 1994 .

[68]  K. Rice,et al.  Experimental determination of oligosaccharide three-dimensional structure , 1993 .

[69]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[70]  Donald G. Truhlar,et al.  Quantum Chemical Conformational Analysis of Glucose in Aqueous Solution , 1993 .

[71]  R. Dwek,et al.  Analysis of glycoprotein-associated oligosaccharides. , 1993, Annual review of biochemistry.

[72]  C. S. Ewig,et al.  Ab Initio computed molecular structures and energies of the conformers of glucose , 1992 .

[73]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[74]  John W. Brady,et al.  Molecular dynamics simulations of .alpha.-D-glucose in aqueous solution , 1989 .

[75]  J. Brady,et al.  A revised potential-energy surface for molecular mechanics studies of carbohydrates. , 1988, Carbohydrate research.

[76]  Hiroshi Ohrui,et al.  1H NMR Analyses of Rotameric Distribution of C5-C6 bonds of D-Glucopyranoses in Solution , 1988 .

[77]  de Nk Koen Vries,et al.  Different rotamer populations around the C-5C-6 bond for α- and β-d-galactopyranosides through the combined interaction of the gauche and anomeric effects: A 300-MHz 1H-n.m.r. and mndo study , 1987 .

[78]  Hiroshi Ohrui,et al.  The preferred rotamer about the C5—C6 bond of D-galactopyranoses and the stereochemistry of dehydrogenation by D-galactose oxidase , 1987 .

[79]  G. A. Jeffrey,et al.  The crystal structure of anhydrous a,a-trehalose at -150 , 1985 .

[80]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[81]  Hiroshi Ohrui,et al.  1H-NMR studies of (6r)- and (6s)-deuterated d-hexoses: assignment of the preferred rotamers about C5C6 bond of D-glucose and D-galactose derivatives in solutions , 1984 .

[82]  P M Cullis,et al.  Affinities of amino acid side chains for solvent water. , 1981, Biochemistry.

[83]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[84]  Serge Pérez,et al.  Conformations of the hydroxymethyl group in crystalline aldohexopyranoses , 1979 .

[85]  R. Jacobson,et al.  The crystal and molecular structure of a-maltose , 1978 .

[86]  A. Perlin,et al.  13C-1H inter-residue, coupling in disaccharides, and the orientations of glycosidic bonds , 1977 .

[87]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[88]  J. E. Mark,et al.  Conformational energies and the random-coil dimensions and dipole moments of the polyoxides CH3O[(CH2)yO]xCH3 , 1976 .

[89]  P. Gatenby Outline Studies in BiologyM.W. Steward, Outline Studies in Biology. Immunochemistry, Chapman & Hall, London (1974), p. 64, illustrated. A$2.95. , 1975 .

[90]  N. D. Epiotis,et al.  Open Shell Interactions, Nonbonded Attraction, and Aromaticity. Implications for Regiochemistry , 1974 .

[91]  D. Rohrer,et al.  The crystal structure of α,α-trehalose dihydrate from three independent X-ray determinations , 1972 .

[92]  T. Taga,et al.  The crystal and molecular structure of trehalose dihydrate , 1972 .

[93]  Saul Wolfe,et al.  Gauche effect. Stereochemical consequences of adjacent electron pairs and polar bonds , 1972 .

[94]  R. H. Marchessault,et al.  Crystal and molecular structure of maltose monohydrate , 1970 .

[95]  J. T. Ham,et al.  The crystal and molecular structure of methyl β-cellobioside–methanol , 1970 .

[96]  Arnold Weissberger,et al.  Organic solvents;: Physical properties and methods of purification , 1970 .

[97]  D. Rees,et al.  Conformational analysis of cellobiose, cellulose, and xylan , 1968 .

[98]  G. A. Jeffrey,et al.  The refinement of the crystal structures of -D-glucose and cellobiose , 1968 .