Overexpression of p18INK4C in LLC-PK1 cells increases resistance to cisplatin-induced apoptosis

[1]  J. Megyesi,et al.  The cell cycle and acute kidney injury. , 2009, Kidney international.

[2]  Xiao-Ming Yin,et al.  Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. , 2008, Kidney international.

[3]  J. Megyesi,et al.  Cytoplasmic initiation of cisplatin cytotoxicity. , 2008, American journal of physiology. Renal physiology.

[4]  Z. Dong,et al.  Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. , 2008, Kidney international.

[5]  S. Waikar,et al.  Diagnosis, epidemiology and outcomes of acute kidney injury. , 2008, Clinical journal of the American Society of Nephrology : CJASN.

[6]  P. Walter,et al.  Endoplasmic reticulum stress in disease pathogenesis. , 2008, Annual review of pathology.

[7]  R. Kaufman,et al.  The endoplasmic reticulum and the unfolded protein response. , 2007, Seminars in cell & developmental biology.

[8]  J. Megyesi,et al.  Activation and involvement of p53 in cisplatin-induced nephrotoxicity. , 2007, American journal of physiology. Renal physiology.

[9]  M. Peyrou,et al.  Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[10]  Mariela C. Marazita,et al.  Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair. , 2007, DNA repair.

[11]  E. White,et al.  Nutlin-3 Protects Kidney Cells during Cisplatin Therapy by Suppressing Bax/Bak Activation* , 2007, Journal of Biological Chemistry.

[12]  S. Muruganandan,et al.  Calpain-induced endoplasmic reticulum stress and cell death following cytotoxic damage to renal cells. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[13]  P. Walter,et al.  Intracellular signaling by the unfolded protein response. , 2006, Annual review of cell and developmental biology.

[14]  D. Ron,et al.  Endoplasmic reticulum stress signaling in disease. , 2006, Physiological reviews.

[15]  J. Megyesi,et al.  Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. , 2006, Journal of the American Society of Nephrology : JASN.

[16]  Afshin Samali,et al.  Mediators of endoplasmic reticulum stress‐induced apoptosis , 2006, EMBO reports.

[17]  P. Devarajan Update on mechanisms of ischemic acute kidney injury. , 2006, Journal of the American Society of Nephrology : JASN.

[18]  John H. White,et al.  P19INK4D and Cell Death , 2006, Cell cycle.

[19]  R. Kaufman,et al.  The unfolded protein response , 2006, Neurology.

[20]  R A Knight,et al.  Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 , 2005, Cell Death and Differentiation.

[21]  J. Massagué,et al.  Cyclin-dependent Kinase Inhibitors Uncouple Cell Cycle Progression from Mitochondrial Apoptotic Functions in DNA-damaged Cancer Cells* , 2005, Journal of Biological Chemistry.

[22]  Sudhir V. Shah,et al.  p53-dependent Caspase-2 Activation in Mitochondrial Release of Apoptosis-inducing Factor and Its Role in Renal Tubular Epithelial Cell Injury* , 2005, Journal of Biological Chemistry.

[23]  J. Megyesi,et al.  Identification of the functional domain of p21(WAF1/CIP1) that protects cells from cisplatin cytotoxicity. , 2005, American journal of physiology. Renal physiology.

[24]  Hua Liu,et al.  Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. , 2005, Journal of the American Society of Nephrology : JASN.

[25]  Dong Wang,et al.  Cellular processing of platinum anticancer drugs , 2005, Nature Reviews Drug Discovery.

[26]  M. Peyrou,et al.  The Endoplasmic Reticulum in Xenobiotic Toxicity , 2005, Drug metabolism reviews.

[27]  J. Massagué,et al.  G1 cell-cycle control and cancer , 2004, Nature.

[28]  I. Braakman,et al.  Protein folding and quality control in the endoplasmic reticulum. , 2004, Current opinion in cell biology.

[29]  S. Oyadomari,et al.  Roles of CHOP/GADD153 in endoplasmic reticulum stress , 2004, Cell Death and Differentiation.

[30]  J. Megyesi,et al.  Protection of renal cells from cisplatin toxicity by cell cycle inhibitors. , 2004, American journal of physiology. Renal physiology.

[31]  A. Aboussekhra,et al.  The tumor suppressor p16INK4a gene is a regulator of apoptosis induced by ultraviolet light and cisplatin , 2004, Oncogene.

[32]  Z. Siddik,et al.  Cisplatin: mode of cytotoxic action and molecular basis of resistance , 2003, Oncogene.

[33]  P. Price,et al.  Lack of a functional p21WAF1/CIP1 gene accelerates caspase-independent apoptosis induced by cisplatin in renal cells. , 2003, American journal of physiology. Renal physiology.

[34]  P. Vandenabeele,et al.  Regulation of the expression and processing of caspase-12 , 2003, The Journal of cell biology.

[35]  J. Thoene,et al.  Lysosomal cystine storage augments apoptosis in cultured human fibroblasts and renal tubular epithelial cells. , 2002, Journal of the American Society of Nephrology : JASN.

[36]  J. Megyesi,et al.  Coordination of the cell cycle is an important determinant of the syndrome of acute renal failure. , 2002, American journal of physiology. Renal physiology.

[37]  G. Ramesh,et al.  TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity , 2002 .

[38]  R. Schnellmann,et al.  Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. , 2002, The Journal of pharmacology and experimental therapeutics.

[39]  P. Devarajan,et al.  Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. , 2002, Journal of the American Society of Nephrology : JASN.

[40]  M. Okusa The Inflammatory Cascade in Acute Ischemic Renal Failure , 2002, Nephron.

[41]  R. Colvin,et al.  Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. , 2001, The Journal of clinical investigation.

[42]  R E Stoll,et al.  Assessment of cisplatin-induced nephrotoxicity by microarray technology. , 2001, Toxicological sciences : an official journal of the Society of Toxicology.

[43]  H. Lincet,et al.  The p21(cip1/waf1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. , 2000, Cancer letters.

[44]  K. Mori Tripartite Management of Unfolded Proteins in the Endoplasmic Reticulum , 2000, Cell.

[45]  S. Shankland,et al.  Cell cycle regulatory proteins in renal disease: role in hypertrophy, proliferation, and apoptosis. , 2000, American journal of physiology. Renal physiology.

[46]  Junying Yuan,et al.  Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β , 2000, Nature.

[47]  M. Ha,et al.  Cdc2 and Cdk2 Kinase Activated by Transforming Growth Factor-β1 Trigger Apoptosis through the Phosphorylation of Retinoblastoma Protein in FaO Hepatoma Cells* , 1999, The Journal of Biological Chemistry.

[48]  M. Razzaque,et al.  Cisplatin-induced apoptosis in human proximal tubular epithelial cells is associated with the activation of the Fas/Fas ligand system , 1999, Histochemistry and Cell Biology.

[49]  V. Godfrey,et al.  CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. , 1998, Genes & development.

[50]  T. Weinert DNA Damage and Checkpoint Pathways Molecular Anatomy and Interactions with Repair , 1998, Cell.

[51]  J. Megyesi,et al.  Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. , 1998, The Journal of clinical investigation.

[52]  G. Casey,et al.  WAF1/CIP1 increases the susceptibility of p53 non-functional malignant glioma cells to cisplatin-induced apoptosis. , 1996, Oncogene.

[53]  W. Lieberthal,et al.  Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. , 1996, The American journal of physiology.

[54]  C. Cordon-Cardo Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. , 1995, The American journal of pathology.

[55]  James M. Roberts,et al.  Inhibitors of mammalian G1 cyclin-dependent kinases. , 1995, Genes & development.

[56]  M. Roussel,et al.  Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6 , 1995, Molecular and cellular biology.

[57]  David O. Morgan,et al.  Principles of CDK regulation , 1995, Nature.

[58]  C. O'keefe,et al.  Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. , 1994, Genes & development.

[59]  I. Herskowitz,et al.  Joining the complex: Cyclin-dependent kinase inhibitory proteins and the cell cycle , 1994, Cell.

[60]  C. Edelstein,et al.  Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice. , 2008, American journal of physiology. Renal physiology.

[61]  Mariela C. Marazita,et al.  INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions , 2007, IUBMB life.

[62]  R A Knight,et al.  Classification of cell death: recommendations of the Nomenclature Committee on Cell Death , 2005, Cell Death and Differentiation.

[63]  M. del Río,et al.  J Am Soc Nephrol 15: 41–51, 2004 The Death Domain of Kidney Ankyrin Interacts with Fas and Promotes Fas-Mediated Cell Death in Renal Epithelia , 2003 .

[64]  Jeffrey M. Trimarchi,et al.  Transcription: Sibling rivalry in the E2F family , 2002, Nature Reviews Molecular Cell Biology.

[65]  L. Hengst,et al.  Inhibitors of the Cip/Kip family. , 1998, Current topics in microbiology and immunology.

[66]  J. Megyesi,et al.  Induction of p 21 WAF 1 / CIP 1 / SDI 1 in Kidney Tubule Cells Affects the Course of Cisplatin-induced Acute Renal Failure , 1998 .

[67]  V. Godfrey,et al.  CDK inhibitors p18 INK4c and p27 Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis , 1998 .