Verification of Analog and Mixed-Signal Circuits Using Hybrid System Techniques

In this paper we demonstrate a potential extension of formal verification methodology in order to deal with time-domain properties of analog and mixed-signal circuits whose dynamic behavior is described by differential algebraic equations. To model and analyze such circuits under all possible input signals and all values of parameters, we build upon two techniques developed in the context of hybrid (discrete-continuous) control systems. First, we extend our algorithm for approximating sets of reachable sets for dense-time continuous systems to deal with differential algebraic equations (DAEs) and apply it to a biquad low-pass filter. To analyze more complex circuits, we resort to bounded horizon verification. We use optimal control techniques to check whether a Δ-Σ modulator, modeled as a discrete-time hybrid automaton, admits an input sequence of bounded length that drives it to saturation.

[1]  R. Schreier,et al.  An algorithm for computing convex positively invariant sets for delta-sigma modulators , 1997 .

[2]  Heinrich Floberg Symbolic Analysis in Analog Integrated Circuit Design , 1997 .

[3]  Mark R. Greenstreet,et al.  Hybrid Systems: Computation and Control , 2002, Lecture Notes in Computer Science.

[4]  Pravin Varaiya,et al.  Reach Set Computation Using Optimal Control , 2000 .

[5]  Amir Pnueli,et al.  Hybrid Systems: Computation and Control , 2003, Lecture Notes in Computer Science.

[6]  Avideh Zakhor,et al.  On the stability of sigma delta modulators , 1993, IEEE Trans. Signal Process..

[7]  Olivier Bournez,et al.  Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems , 2000, HSCC.

[8]  B. Krogh,et al.  Towards formal verification of analog designs , 2004, ICCAD 2004.

[9]  Dejan Nickovic,et al.  Monitoring Temporal Properties of Continuous Signals , 2004, FORMATS/FTRTFT.

[10]  A. Salem Semi-formal verification of VHDL-AMS descriptions , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[11]  Ángel Rodríguez-Vázquez,et al.  Top-Down Design of High-Performance Sigma-Delta Modulators , 1998 .

[12]  D. Mayne,et al.  Approximation of the minimal robustly positively invariant set for discrete-time LTI systems with persistent state disturbances , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[13]  Eugene Asarin,et al.  The d/dt Tool for Verification of Hybrid Systems , 2002, CAV.

[14]  Uri M. Ascher,et al.  Stability of Computational Methods for Constrained Dynamics Systems , 1991, SIAM J. Sci. Comput..

[15]  George J. Pappas,et al.  Hybrid Systems: Computation and Control , 2004, Lecture Notes in Computer Science.

[16]  H. V. Sorensen,et al.  An overview of sigma-delta converters , 1996, IEEE Signal Process. Mag..

[17]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[18]  T. Wichmann Computer Aided Generation of Approximate DAE Systems for Symbolic Analog Circuit Design , 2001 .

[19]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[20]  Lars Hedrich,et al.  On Discrete Modeling and Model Checking for Nonlinear Analog Systems , 2002, CAV.

[21]  Antoine Girard,et al.  Reachability Analysis of Nonlinear Systems Using Conservative Approximation , 2003, HSCC.

[22]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[23]  Robert P. Kurshan,et al.  Analysis of digital circuits through symbolic reduction , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[24]  Avideh Zakhor,et al.  Optimal Decoding for ONS Encoders with Constant Inputs , 1993 .

[25]  T. E. Hull,et al.  Numerical solution of initial value problems , 1966 .

[26]  Lars Hedrich,et al.  On the Simplification of Nonlinear DAE Systems in Analog Circuit Design , 1999, CASC.

[27]  M. Günther,et al.  The DAE-index in electric circuit simulation , 1995 .

[28]  Eugene Asarin,et al.  Abstraction by Projection and Application to Multi-affine Systems , 2004, HSCC.

[29]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[30]  Bruce H. Krogh,et al.  Verification of Polyhedral-Invariant Hybrid Automata Using Polygonal Flow Pipe Approximations , 1999, HSCC.

[31]  Oded Maler On optimal and sub-optimal control in the presence of adversaries 1 , 2004 .

[32]  Terri S. Fiez,et al.  Stability analysis of high-order delta-sigma modulation for ADC's , 1994 .