Direct Multi‐Scale Modeling of Sintering

A new multi-scale numerical approach for the modeling of sintering of macroscopically inhomogeneous materials is put forward. The new approach does not require the formulation of material constitutive equations: it specifies material properties through the definition of macroscopic unit cells. As a result, the influence of any number of material structure parameters on sintering kinetics and on specimen distortion can be investigated. The method is based on the consideration of the sintered body macroscopic behavior in parallel with an online analysis of the mesoscopic evolution of the unit cell structure. The developed modeling approach provides the information on the sintering progress at both macro- and meso-scale levels. The examples of diffusion sintering of ceramic composites and of viscous sintering of a bi-layer porous specimen containing voids of anisotropic shapes are considered.

[1]  A. Maksimenko Direct multiscale modeling of diffusion sintering of ceramic composites , 2010 .

[2]  O. Guillon,et al.  Microstructural Characterization of Alumina Films During Constrained Sintering , 2010 .

[3]  Luis Olmos,et al.  Evolution of Defects During Sintering: Discrete Element Simulations , 2009 .

[4]  J. Rödel,et al.  Densification of Powder Compact Containing Large and Small Pores , 2009 .

[5]  Jacob Fish,et al.  Mathematical homogenization of nonperiodic heterogeneous media subjected to large deformation transient loading , 2008 .

[6]  E. Olevsky,et al.  Multi-scale modeling of viscous sintering , 2008 .

[7]  O. Guillon,et al.  Constrained sintering: A delicate balance of scales , 2008 .

[8]  F. Wakai Modeling and Simulation of Elementary Processes in Ideal Sintering , 2006 .

[9]  V. Tikare,et al.  Modelling of anisotropic sintering in crystalline ceramics , 2005 .

[10]  E. Olevsky,et al.  Homogeneity of isostatic pressure-assisted sintering of agglomerated powder , 2005 .

[11]  E. Olevsky,et al.  Numerical Simulation of Anisotropic Shrinkage in a 2D Compact of Elongated Particles , 2004 .

[12]  H. Riedel,et al.  Numerical simulation of die compaction and sintering , 2002 .

[13]  E. Olevsky,et al.  Modeling of Damage Development During Sintering of Ceramics , 2001 .

[14]  E. Olevsky,et al.  Processing of platelet-reinforced glass matrix composites: effect of inclusions on sintering anisotropy , 1999 .

[15]  Eugene A. Olevsky,et al.  Theory of sintering: from discrete to continuum , 1998 .

[16]  Alfred Van de Vorst Numerical Simulation of Viscous Sintering by a Periodic Lattice of a Representative Unit Cell , 2005 .

[17]  A. Cocks Overview no. 117 The structure of constitutive laws for the sintering of fine grained materials , 1994 .

[18]  E. Olevsky,et al.  Deformation aspects of anisotropic-porous bodies sintering , 1993 .

[19]  I. Chen Mobility control of ceramic grain boundaries and interfaces , 1993 .

[20]  Jing-Song Pan,et al.  Computer simulation of superplastic deformation , 1993 .

[21]  H. Riedel,et al.  Pore-boundary interactions and evolution equations for the porosity and the grain size during sintering , 1992 .

[22]  C. Fan,et al.  Factors Controlling the Sintering of Ceramic Particulate Composites: I, Conventional Processing , 1992 .

[23]  G. Scherer,et al.  On constrained sintering-III. Rigid inclusions , 1988 .

[24]  R. Raj,et al.  Sintering of TiO2–Al2O3 Composites: A Model Experimental Investigation , 1988 .

[25]  L. C. Jonghe,et al.  Inclusion size and sintering of composite powders , 1988 .

[26]  George W. Scherera Sintering with Rigid Inclusions , 1987 .

[27]  M. Ashby,et al.  On grain boundary sliding and diffusional creep , 1971 .

[28]  W. R. Foster A Study of Solid‐state Reaction in the Ternary System MgO–ZrO2,–SiO2 , 1951 .