Signal Processing in Analytical Chemistry

Signal processing refers to a variety of operations that can be carried out on a continuous (analog) or discrete (digital) sequence of measurements in order to enhance the quality of information it is intended to convey. In the analog domain, electronic signal processing can encompass such operations as amplification, filtering, integration, differentiation, modulation/demodulation, peakdetection, and analog-to-digital (A/D) conversion. Digital signal processing can include a variety of filtering methods (e.g. polynomial least-squares smoothing, differentiation, median smoothing, matched filtering, boxcar averaging, interpolation, decimation, and Kalman filtering) and domain transformations (e.g. Fourier transform (FT), Hadamard transform (HT), and wavelet transform (WT)). Generally the objective is to separate the useful part of the signal from the part that contains no useful information (the noise) using either explicit or implicit models that distinguish these two components. Signal processing at various stages has become an integral part of most modern analytical measurement systems and plays a critical role in ensuring the quality of those measurements.

[1]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[2]  P. Treado,et al.  A thousand points of light: the Hadamard transform in chemical analysis and instrumentation. , 1989, Analytical chemistry.

[3]  S. R. Crouch,et al.  Frequency response of initial point least squares polynomial filters , 1987 .

[4]  A. Habibi,et al.  Introduction to wavelets , 1995, Proceedings of MILCOM '95.

[5]  Howard V. Malmstadt,et al.  Electronics and instrumentation for scientists , 1981 .

[6]  William H. Press,et al.  Numerical recipes in C , 2002 .

[7]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[8]  A. Marshall Fourier, Hadamard, and Hilbert Transforms in Chemistry , 1982 .

[9]  George S. Moschytz,et al.  Active Filter Design Handbook , 1981 .

[10]  Gary Horlick,et al.  Digital data handling of spectra utilizing Fourier transformations , 1972 .

[11]  A. James Diefenderfer,et al.  Principles of electronic instrumentation , 1972 .

[12]  Daria K. Graff,et al.  Fourier and Hadamard: Transforms in spectroscopy , 1995 .

[13]  A. Proctor,et al.  Smoothing of digital x-ray photoelectron spectra by an extended sliding least-squares approach , 1980 .

[14]  Joel M. Harris,et al.  Least-squares polynomial filters for initial point and slope estimation , 1984 .

[15]  R. Bonner,et al.  Application of wavelet transforms to experimental spectra : Smoothing, denoising, and data set compression , 1997 .

[16]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[17]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  C. G. Enke,et al.  Signal-to-Noise Ratio Enhancement by Least-Squares Polynomial Smoothing , 1976 .

[19]  F. Verdun,et al.  Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User's Handbook , 1990 .

[20]  Steven D. Brown,et al.  Estimation of first-order kinetic parameters by using the extended kalman filter , 1985 .

[21]  Practical computation with Fourier transforms for data analysis , 1981 .

[22]  Trevor J. Terrell Introduction to Digital Filters , 1980 .

[23]  Kevin M. Daugherty,et al.  Analog to Digital Conversion: A Practical Approach , 1995 .

[24]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[25]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[26]  H. Poulisse,et al.  Multicomponent-analysis computations based on kalman filtering , 1979 .

[27]  Steven D. Brown The Kalman filter in analytical chemistry , 1986 .

[28]  G. Horlick Fourier Transform Approaches to Spectroscopy , 1971 .

[29]  Paul Horowitz,et al.  The Art of Electronics - 2nd Edition , 1989 .

[30]  D. Massart Chemometrics: A Textbook , 1988 .

[31]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[32]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[33]  Relationship between digital filtering and multivariate regression in quantitative analysis , 1992 .

[34]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[35]  Robert Grover Brown,et al.  Introduction to random signal analysis and Kalman filtering , 1983 .

[36]  Steven D. Brown,et al.  Adaptive Kalman filtering used to compensate for model errors in multicomponent methods , 1984 .

[37]  Randall D. Tobias,et al.  Chemometrics: A Practical Guide , 1998, Technometrics.

[38]  Desire L. Massart,et al.  Noise suppression and signal compression using the wavelet packet transform , 1997 .

[39]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Mark Cartwright Fourier Methods for Mathematicians, Scientists and Engineers , 1990 .

[41]  M. Bromba,et al.  Application hints for Savitzky-Golay digital smoothing filters , 1981 .

[42]  N. Sloane,et al.  Hadamard transform optics , 1979 .