Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector.

[1]  J. Dionne,et al.  In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. , 2014, Nature materials.

[2]  Renu Sharma,et al.  Direct evidence of active and inactive phases of Fe catalyst nanoparticles for carbon nanotube formation , 2014 .

[3]  Renu Sharma,et al.  Nucleation of graphene and its conversion to single-walled carbon nanotubes. , 2014, Nano letters.

[4]  S. Takeda,et al.  Oxidation and reduction processes of platinum nanoparticles observed at the atomic scale by environmental transmission electron microscopy. , 2014, Nanoscale.

[5]  P. Batson,et al.  Vibrational spectroscopy in the electron microscope , 2014, Nature.

[6]  J. F. Creemer,et al.  Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. , 2014, Nature materials.

[7]  Y. Homma,et al.  Structurally inhomogeneous nanoparticulate catalysts in cobalt-catalyzed carbon nanotube growth , 2014 .

[8]  Lin-wang Wang,et al.  Revealing the atomic restructuring of Pt-Co nanoparticles. , 2014, Nano letters.

[9]  B. Miller,et al.  Analysis of Catalytic Gas Products Using Electron Energy-Loss Spectroscopy and Residual Gas Analysis for Operando Transmission Electron Microscopy , 2014, Microscopy and Microanalysis.

[10]  J. Wagner,et al.  Catalysts under Controlled Atmospheres in the Transmission Electron Microscope , 2014 .

[11]  T. Mallouk,et al.  Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide supports. , 2014, Journal of the American Chemical Society.

[12]  S. Takeda,et al.  Elucidation of the origin of grown-in defects in carbon nanotubes , 2014 .

[13]  P. Voorhees,et al.  Twin plane re-entrant mechanism for catalytic nanowire growth. , 2014, Nano letters.

[14]  J. Jinschek Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas-solid interactions. , 2014, Chemical communications.

[15]  P. D. Brown,et al.  Insights from in situ and environmental TEM on the oriented attachment of α-Fe2O3 nanoparticles during α-Fe2O3 nanorod formation , 2014 .

[16]  Jakob B Wagner,et al.  Measurements of local chemistry and structure in Ni(O)-YSZ composites during reduction using energy-filtered environmental TEM. , 2014, Chemical communications.

[17]  J. Tersoff,et al.  Atomic-Scale Variability and Control of III-V Nanowire Growth Kinetics , 2014, Science.

[18]  M. Kohyama,et al.  A Study on the Mechanism for H2 Dissociation on Au/TiO2 Catalysts , 2014 .

[19]  Haim H Bau,et al.  Bubble and pattern formation in liquid induced by an electron beam. , 2014, Nano letters.

[20]  Daan Hein Alsem,et al.  In Situ TEM Study of Catalytic Nanoparticle Reactions in Atmospheric Pressure Gas Environment , 2013, Microscopy and Microanalysis.

[21]  P. Gai,et al.  In Situ Aberration‐Corrected Environmental TEM: Reduction of Model Co3O4 in H2 at the Atomic Level , 2013 .

[22]  E. Stach,et al.  In Situ Observation of the Effect of Nitrogen on Carbon Nanotube Synthesis , 2013 .

[23]  M. Kohyama,et al.  Direct O2 Activation on Gold/Metal Oxide Catalysts through a Unique Double Linear OAuO Structure , 2013 .

[24]  Xiao Feng Zhang,et al.  High-resolution environmental transmission electron microscopy: modeling and experimental verification. , 2013, Microscopy.

[25]  M. Haruta,et al.  Stepwise displacement of catalytically active gold nanoparticles on cerium oxide. , 2013, Nano letters.

[26]  F. Tao,et al.  Restructuring transition metal oxide nanorods for 100% selectivity in reduction of nitric oxide with carbon monoxide. , 2013, Nano letters.

[27]  P. Gai,et al.  ESTEM imaging of single atoms under controlled temperature and gas environment conditions in catalyst reaction studies , 2013 .

[28]  A. Frenkel,et al.  WGS catalysis and in situ studies of CoO(1-x), PtCo(n)/Co3O4, and Pt(m)Co(m')/CoO(1-x) nanorod catalysts. , 2013, Journal of the American Chemical Society.

[29]  Sivakumar R. Challa,et al.  Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? , 2013, Accounts of chemical research.

[30]  Sihui Zhan,et al.  In-situ studies of nanocatalysis. , 2013, Accounts of chemical research.

[31]  C. Hébert,et al.  Reduction of nickel oxide particles by hydrogen studied in an environmental TEM , 2013, Journal of Materials Science.

[32]  O. Zhou,et al.  Observations of carbon nanotube oxidation in an aberration-corrected environmental transmission electron microscope. , 2013, ACS nano.

[33]  Juha Lehtonen,et al.  Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles , 2013, Scientific Reports.

[34]  S. Takeda,et al.  Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science. , 2013, Microscopy.

[35]  N. Tanaka,et al.  Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell , 2013, Nanotechnology.

[36]  B. Miller,et al.  Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. , 2013, Nano letters.

[37]  J. Robertson,et al.  The Phase of Iron Catalyst Nanoparticles during Carbon Nanotube Growth , 2012 .

[38]  L. Luo,et al.  Step-edge-induced oxide growth during the oxidation of Cu surfaces. , 2012, Physical review letters.

[39]  S. Takeda,et al.  In situ structural analysis of crystalline Fe-Mo-C nanoparticle catalysts during the growth of carbon nanotubes. , 2012, Micron.

[40]  J. Jinschek,et al.  Image resolution and sensitivity in an environmental transmission electron microscope. , 2012, Micron.

[41]  Angelica D. Benavidez,et al.  Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts , 2012 .

[42]  S. Iijima,et al.  Atomic imaging and spectroscopy of low-dimensional materials with interrupted periodicities. , 2012, Journal of electron microscopy.

[43]  M. Kohyama,et al.  Theoretical study of atomic oxygen on gold surface by Hückel theory and DFT calculations. , 2012, The journal of physical chemistry. A.

[44]  Nobuo Tanaka,et al.  Atomic origins of the high catalytic activity of nanoporous gold. , 2012, Nature materials.

[45]  H. Stein,et al.  In Situ Electrochemical Electron Microscopy Study of Oxygen Evolution Activity of Doped Manganite Perovskites , 2012 .

[46]  Takahiro Shimizu,et al.  Development of a technique for in situ high temperature TEM observation of catalysts in a highly moisturized air atmosphere. , 2012, Journal of electron microscopy.

[47]  T. Akita,et al.  Intrinsic catalytic structure of gold nanoparticles supported on TiO2. , 2012, Angewandte Chemie.

[48]  K. Kimoto,et al.  Visualization of hybridization states with atomic resolution using electron energy loss spectroscopy mapping , 2012 .

[49]  Daniel J. Hellebusch,et al.  High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells , 2012, Science.

[50]  S. Dahl,et al.  In situ transmission electron microscopy of light-induced photocatalytic reactions , 2012, Nanotechnology.

[51]  M. Haruta,et al.  Visualizing Gas Molecules Interacting with Supported Nanoparticulate Catalysts at Reaction Conditions , 2012, Science.

[52]  Seiji Takeda,et al.  A theoretical study of CO adsorption on gold by Hückel theory and density functional theory calculations , 2011, J. Comput. Chem..

[53]  M. Haruta,et al.  Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation. , 2011, Angewandte Chemie.

[54]  U Kaiser,et al.  Transmission electron microscopy at 20 kV for imaging and spectroscopy. , 2011, Ultramicroscopy.

[55]  T. Kamino,et al.  Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. , 2011, Journal of electron microscopy.

[56]  M. Haruta,et al.  Temperature-Dependent Change in Shape of Platinum Nanoparticles Supported on CeO2 during Catalytic Reactions , 2011 .

[57]  F. Tao,et al.  In Situ Studies of Chemistry and Structure of Materials in Reactive Environments , 2011, Science.

[58]  J. Wagner,et al.  Aberration corrected and monochromated environmental transmission electron microscopy: Challenges and prospects for materials science , 2010 .

[59]  Gianluigi A. Botton,et al.  Elemental mapping at the atomic scale using low accelerating voltages , 2010 .

[60]  N. Browning,et al.  Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. , 2010, Nature nanotechnology.

[61]  J. Jinschek,et al.  Quantitative atomic 3-D imaging of single/double sheet graphene structure , 2010 .

[62]  Ib Chorkendorff,et al.  Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. , 2010, Journal of the American Chemical Society.

[63]  S. Pennycook,et al.  Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy , 2010, Nature.

[64]  N. de Jonge,et al.  Atmospheric pressure scanning transmission electron microscopy. , 2010, Nano letters.

[65]  Lin-Wang Wang,et al.  Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage , 2010, Science.

[66]  T. Tanji,et al.  Improvement of windowed type environmental-cell transmission electron microscope for in situ observation of gas-solid interactions. , 2009, The Review of scientific instruments.

[67]  Seiji Takeda,et al.  Atomic-scale analysis on the role of molybdenum in iron-catalyzed carbon nanotube growth. , 2009, Nano letters.

[68]  E A Kenik,et al.  Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit , 2008, Microscopy and Microanalysis.

[69]  G. Hutchings,et al.  Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation , 2008, Science.

[70]  J. F. Creemer,et al.  Atomic-scale electron microscopy at ambient pressure. , 2008, Ultramicroscopy.

[71]  K. Urban,et al.  Studying Atomic Structures by Aberration-Corrected Transmission Electron Microscopy , 2008, Science.

[72]  Seiji Takeda,et al.  Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. , 2008, Nano letters.

[73]  Søren Dahl,et al.  Ceria-catalyzed soot oxidation studied by environmental transmission electron microscopy , 2008 .

[74]  S. Takeda,et al.  Environmental Transmission Electron Microscopy Observations of Swinging and Rotational Growth of Carbon Nanotubes , 2007 .

[75]  C. Boothroyd,et al.  Dynamical observation of bamboo-like carbon nanotube growth. , 2007, Nano letters.

[76]  N. Solin,et al.  Imaging of Single Organic Molecules in Motion , 2007, Science.

[77]  S. Giorgio,et al.  Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows. , 2006, Ultramicroscopy.

[78]  S. Helveg,et al.  Atomic-scale studies of metallic nanocluster catalysts by in situ high-resolution transmission electron microscopy , 2006 .

[79]  H. Makino,et al.  Development of a gas injection/specimen heating holder for use with transmission electron microscope. , 2005, Journal of electron microscopy.

[80]  H. Yoshida,et al.  Image formation in a transmission electron microscope equipped with an environmental cell : Single-walled carbon nanotubes in source gases , 2005 .

[81]  Renu Sharma,et al.  Environmental Transmission Electron Microscopy in Nanotechnology , 2005 .

[82]  S. Takeda,et al.  HRTEM Image Simulation of Carbon Nanotubes Under Actual Growth Environment , 2004, Microscopy and Microanalysis.

[83]  Renu Sharma,et al.  In situ observations of carbon nanotube formation using environmental transmission electron microscopy , 2004 .

[84]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[85]  C. Jia,et al.  High-resolution imaging with an aberration-corrected transmission electron microscope. , 2002, Ultramicroscopy.

[86]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[87]  Renu Sharma,et al.  Development of a TEM to study in situ structural and chemical changes at an atomic level during gas‐solid interactions at elevated temperatures , 1998, Microscopy research and technique.

[88]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[89]  T. Ichihashi,et al.  NANOHOLES ON SILICON SURFACE CREATED BY ELECTRON IRRADIATION UNDER ULTRAHIGH VACUUM ENVIRONMENT , 1997 .

[90]  T. Ichihashi,et al.  EFFECTS OF O2 ON THE (113) DEFECT FORMATION IN SI OBSERVED BY IN SITU ULTRAHIGH VACUUM TRANSMISSION ELECTRON MICROSCOPY , 1997 .

[91]  P. Gai,et al.  Environmental high resolution electron microscopy and applications to chemical science , 1997, 1705.05751.

[92]  Spence,et al.  Observation of Moving Dislocation Kinks and Unpinning. , 1996, Physical review letters.

[93]  Y. Ohno,et al.  A new apparatus for in situ photoluminescence spectroscopy in a transmission electron microscope , 1995 .

[94]  S. Muto,et al.  Hydrogen-induced platelets in silicon studied by transmission electron microscopy , 1995 .

[95]  M. Kohyama,et al.  Interstitial defects on {′113} in Si and Ge Line defect configuration incorporated with a self-interstitial atom chain , 1994 .

[96]  A. Datye,et al.  The study of heterogeneous catalysts by high-resolution transmission electron microscopy , 1992 .

[97]  T. C. Lee,et al.  An environmental cell transmission electron microscope , 1991 .

[98]  N. Rodriguez,et al.  An atomic oxygen environmental cell for a transmission electron microscope , 1990 .

[99]  Masaetsu Takahashi,et al.  Structure analysis of si(111)-7×7 reconstructed surface by transmission electron diffraction , 1985 .

[100]  McDonald,et al.  Direct imaging of a novel silicon surface reconstruction. , 1985, Physical review letters.

[101]  David J. Smith,et al.  Direct surface imaging in small metal particles , 1983, Nature.

[102]  J. Spence,et al.  Atomic structure of the NiSi2/(111)Si interface , 1982 .

[103]  Y. Ishida,et al.  Observation of [110) tilt boundary structures in gold by high resolution HVEM , 1981 .

[104]  D. Cherns Sputtering in the high-voltage electron microscope , 1979 .

[105]  A. Bourret,et al.  The low-angle [011] tilt boundary in germanium I. High-resolution structure determination , 1979 .

[106]  H. Flower High voltage electron microscopy of environmental reactions , 1973 .

[107]  R. J. Waite,et al.  Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene , 1972 .

[108]  Sumio Iijima,et al.  High‐Resolution Electron Microscopy of Crystal Lattice of Titanium‐Niobium Oxide , 1971 .

[109]  H. Hashimoto,et al.  High Temperature Gas Reaction Specimen Chamber for an Electron Microscope , 1968 .

[110]  E. Ruska Beitrag zur übermikroskopischen Abbildung bei höheren Drucken , 1942 .

[111]  H. Friedrich,et al.  Towards stable catalysts by controlling collective properties of supported metal nanoparticles. , 2013, Nature materials.

[112]  Tuncay Alan,et al.  In-situ TEM on (de)hydrogenation of Pd at 0.5-4.5 bar hydrogen pressure and 20-400°C. , 2012, Ultramicroscopy.

[113]  T. Akita,et al.  Influence of the preparation methods for Pt/CeO2 and Au/CeO2 catalysts in CO oxidation , 2010 .

[114]  A. Fukami,et al.  Injection of Liquid into Environmental Cell for in situ Observations , 1985 .