Environmental factors influencing the inactivation of Cronobacter sakazakii by high hydrostatic pressure.

[1]  S. Condón,et al.  Novel technologies in combined processes. , 2011 .

[2]  Daniel F. Farkas,et al.  Nonthermal processing technologies for food , 2011 .

[3]  S. Condón,et al.  Biological Approach to Modeling of Staphylococcus aureus High-Hydrostatic-Pressure Inactivation Kinetics , 2010, Applied and Environmental Microbiology.

[4]  S. Condón,et al.  Thermobacteriological characterization of Enterobacter sakazakii. , 2009, International journal of food microbiology.

[5]  M. Matsubara,et al.  Prediction of a Required Log Reduction with Probability for Enterobacter sakazakii during High-Pressure Processing, Using a Survival/Death Interface Model , 2009, Applied and Environmental Microbiology.

[6]  M. Somolinos,et al.  Relationship between Sublethal Injury and Microbial Inactivation by the Combination of High Hydrostatic Pressure and Citral or tert-Butyl Hydroquinone , 2008, Applied and Environmental Microbiology.

[7]  G. Demazeau,et al.  Modeling high pressure inactivation of Escherichia coli and Listeria innocua in whole milk , 2008 .

[8]  C. Hill,et al.  Acid stress responses in Listeria monocytogenes. , 2008, Advances in applied microbiology.

[9]  M. Pérez,et al.  Pressure Inactivation Kinetics of Enterobacter sakazakii in Infant Formula Milk , 2007 .

[10]  M. Friedemann Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). , 2007, International journal of food microbiology.

[11]  R. Anantheswaran,et al.  The effects of growth temperature and growth phase on the inactivation of Listeria monocytogenes in whole milk subject to high pressure processing. , 2007, International journal of food microbiology.

[12]  G. Fitzgerald,et al.  Baroprotection of vegetative bacteria by milk constituents: A study of Listeria innocua , 2007 .

[13]  V. M. Balasubramaniam,et al.  Opportunities and Challenges in High Pressure Processing of Foods , 2007, Critical reviews in food science and nutrition.

[14]  Dick B Janssen,et al.  Biocatalysis by dehalogenating enzymes. , 2007, Advances in applied microbiology.

[15]  S. Koseki,et al.  pH and solute concentration of suspension media affect the outcome of high hydrostatic pressure treatment of Listeria monocytogenes. , 2006, Journal of food microbiology.

[16]  G. Flick,et al.  Effect of high-pressure processing on strains of Enterobacter sakazakii. , 2006, Journal of food protection.

[17]  S. Fanning,et al.  Enterobacter sakazakii: an emerging pathogen in powdered infant formula. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[18]  Marco W Fraaije,et al.  Occurrence and biocatalytic potential of carbohydrate oxidases. , 2006, Advances in applied microbiology.

[19]  M. Patterson Microbiology of pressure‐treated foods , 2005, Journal of applied microbiology.

[20]  R. Sleator,et al.  Role for Compatible Solutes Glycine Betaine and l-Carnitine in Listerial Barotolerance , 2004, Applied and Environmental Microbiology.

[21]  D. Hoover,et al.  Use of Weibull model to describe and predict pressure inactivation of Listeria monocytogenes Scott A in whole milk , 2004 .

[22]  A. Sherry,et al.  Comparison of 40 Salmonella enterica serovars injured by thermal, high‐pressure and irradiation stress , 2004, Journal of applied microbiology.

[23]  Wolfgang Doster,et al.  Protective Effect of Sucrose and Sodium Chloride for Lactococcus lactis during Sublethal and Lethal High-Pressure Treatments , 2004, Applied and Environmental Microbiology.

[24]  C. Michiels,et al.  High sucrose concentration protects E. coli against high pressure inactivation but not against high pressure sensitization to the lactoperoxidase system. , 2003, International journal of food microbiology.

[25]  S. Forsythe,et al.  Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula , 2003 .

[26]  A. Yousef,et al.  Pressure death and tailing behavior of Listeria monocytogenes strains having different barotolerances. , 2003, Journal of food protection.

[27]  D. Hoover,et al.  Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. , 2003, International journal of food microbiology.

[28]  P. Mañas,et al.  Role of Membrane Fluidity in Pressure Resistance of Escherichia coli NCTC 8164 , 2002, Applied and Environmental Microbiology.

[29]  G. Barbosa‐Cánovas,et al.  Food Processing by High Hydrostatic Pressure , 2002, Critical reviews in food science and nutrition.

[30]  C. Michiels,et al.  Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure. , 2002, International journal of food microbiology.

[31]  I. Leguerinel,et al.  On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. , 2001, International journal of food microbiology.

[32]  R. B. Tompkin,et al.  Microbiological Testing in Food Safety Management , 2002 .

[33]  J. McClements,et al.  The effect of growth stage and growth temperature on high hydrostatic pressure inactivation of some psychrotrophic bacteria in milk. , 2001, Journal of food protection.

[34]  K. K. Lai Enterobacter sakazakii Infections among Neonates, Infants, Children, and Adults: Case Reports and a Review of the Literature , 2001, Medicine.

[35]  Dallas G. Hoover,et al.  High Pressure Processing , 2000 .

[36]  B. Ray,et al.  Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. , 2000, International journal of food microbiology.

[37]  A H Geeraerd,et al.  Structural model requirements to describe microbial inactivation during a mild heat treatment. , 2000, International journal of food microbiology.

[38]  Grahame W. Gould,et al.  Microbiological Safety and Quality of Food , 1999 .

[39]  P. F. ter Steeg,et al.  Synergistic Actions of Nisin, Sublethal Ultrahigh Pressure, and Reduced Temperature on Bacteria and Yeast , 1999, Applied and Environmental Microbiology.

[40]  C. Dunne,et al.  Variation in Resistance to Hydrostatic Pressure among Strains of Food-Borne Pathogens , 1999, Applied and Environmental Microbiology.

[41]  T. Robinson,et al.  Variation in Resistance of Natural Isolates ofEscherichia coli O157 to High Hydrostatic Pressure, Mild Heat, and Other Stresses , 1999, Applied and Environmental Microbiology.

[42]  K. Bernaerts,et al.  Protective effect of calcium on inactivation of Escherichia coli by high hydrostatic pressure , 1998, Journal of applied microbiology.

[43]  J. Smelt,et al.  Recent advances in the microbiology of high pressure processing , 1998 .

[44]  J. Smelt,et al.  Effects of High Pressure on Inactivation Kinetics and Events Related to Proton Efflux in Lactobacillus plantarum , 1998, Applied and Environmental Microbiology.

[45]  R. Simpson,et al.  The effect of high hydrostatic pressure on Listeria monocytogenes in phosphate‐buffered saline and model food systems , 1997, Journal of applied microbiology.

[46]  H. Nikaido,et al.  Active efflux of bile salts by Escherichia coli , 1997, Journal of bacteriology.

[47]  D. E. Johnston,et al.  High pressure processing of foods , 1997 .

[48]  N. Isaacs,et al.  Factors affecting the resistance of listeria monocytogenes to high hydrostatic pressure , 1995 .

[49]  D. Knorr,et al.  Baroprotective Effects of High Solute Concentrations Against Inactivation of Rhodotorula rubra , 1993 .

[50]  W. H. Elliott,et al.  Data for Biochemical Research , 1986 .

[51]  O. Cerf,et al.  A REVIEW Tailing of Survival Curves of Bacterial Spores , 1977 .

[52]  W. D. Bigelow,et al.  The logarithmic nature of thermal death time curves , 1921 .