Quantitative analysis of electroluminescence images from polymer solar cells

We introduce the micro-diode-model (MDM) based on a discrete network of interconnected diodes, which allows for quantitative description of lateral electroluminescence emission images obtained from organic bulk heterojunction solar cells. Besides the distributed solar cell description, the equivalent circuit, respectively, network model considers interface and bulk resistances as well as the sheet resistance of the semitransparent electrode. The application of this model allows direct calculation of the lateral current and voltage distribution within the solar cell and thus accounts well for effects known as current crowding. In addition, network parameters such as internal resistances and the sheet-resistance of the higher resistive electrode can be determined. Furthermore, upon introduction of current sources the micro-diode-model also is able to describe and predict current-voltage characteristics for solar cell devices under illumination. The local nature of this description yields important conclusio...

[1]  Wilhelm Warta,et al.  Determination of local minority carrier diffusion lengths in crystalline silicon from luminescence images , 2009 .

[2]  Arturo Morales-Acevedo,et al.  Lateral current effects on the voltage distribution in the emitter of solar cells under concentrated sunlight , 2009 .

[3]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[4]  H. Hoppe,et al.  Luminescence imaging of polymer solar cells: Visualization of progressing degradation , 2011 .

[5]  K. S. Narayan,et al.  Area dependent efficiency of organic solar cells , 2008 .

[6]  Wilhelm Warta,et al.  Diffusion lengths of silicon solar cells from luminescence images , 2007 .

[7]  Marco Seeland,et al.  Optimal geometric design of monolithic thin-film solar modules: Architecture of polymer solar cells , 2012 .

[8]  Frederik C. Krebs,et al.  Origin of size effect on efficiency of organic photovoltaics , 2011 .

[9]  Harald Hoppe,et al.  Influence of polymer solar cell geometry on series resistance and device efficiency , 2009 .

[10]  P. Würfel,et al.  The chemical potential of radiation , 1982 .

[11]  J. Sites,et al.  Impact of sheet resistance on 2-D modeling of thin-film solar cells , 2009 .

[12]  Harald Hoppe,et al.  Multiparametric optimization of polymer solar cells: A route to reproducible high efficiency , 2009 .

[13]  M. W. Denhoff,et al.  The effect of the front contact sheet resistance on solar cell performance , 2009 .

[14]  Karsten Walzer,et al.  Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity , 2006 .

[15]  Jean Manca,et al.  Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells , 2010 .

[16]  Marco Seeland,et al.  Electroluminescence as Characterization Tool for Polymer Solar Cells and Modules , 2012 .

[17]  D. Schroder,et al.  Solar cell contact resistance—A review , 1984, IEEE Transactions on Electron Devices.

[18]  Christoph J. Brabec,et al.  Electroluminescence imaging of organic photovoltaic modules , 2010 .

[19]  Thorsten Trupke,et al.  Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging , 2007 .

[20]  D. Widmann,et al.  Current crowding on metal contacts to planar devices , 1969 .

[21]  H. Lyu,et al.  Efficiency enhancement in large-area organic photovoltaic module using theoretical power loss model , 2011 .

[22]  A. D. Vos The distributed series resistance problem in solar cells , 1984 .

[23]  Thomas Kirchartz,et al.  Quantitative electroluminescence analysis of resistive losses in Cu(In, Ga)Se2 thin-film modules , 2010 .