Experimental quantum conference key agreement

When Alice and Bob invite their friends, quantum key distribution with multiparty entanglement enables secure conference call. Quantum networks will provide multinode entanglement enabling secure communication on a global scale. Traditional quantum communication protocols consume pair-wise entanglement, which is suboptimal for distributed tasks involving more than two users. Here, we demonstrate quantum conference key agreement, a cryptography protocol leveraging multipartite entanglement to efficiently create identical keys between N users with up to N-1 rate advantage in constrained networks. We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states, generated by high-brightness telecom photon-pair sources, over optical fiber with combined lengths of up to 50 km and then perform multiuser error correction and privacy amplification. Under finite-key analysis, we establish 1.5 × 106 bits of secure key, which are used to encrypt and securely share an image between four users in a conference transmission. Our work highlights a previously unexplored protocol tailored for multinode networks leveraging low-noise, long-distance transmission of GHZ states that will pave the way for future multiparty quantum information processing applications.

[1]  Rafael Chaves,et al.  Enhanced Multiqubit Phase Estimation in Noisy Environments by Local Encoding. , 2019, Physical review letters.

[2]  Yonggi Jo,et al.  Semi-device-independent multiparty quantum key distribution in the asymptotic limit , 2019, OSA Continuum.

[3]  Jörn Müller-Quade,et al.  Composability in quantum cryptography , 2009, ArXiv.

[4]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[5]  Thomas Jennewein,et al.  A wavelength-tunable fiber-coupled source of narrowband entangled photons. , 2007, Optics express.

[6]  Kai Chen,et al.  Phase-Matching Quantum Cryptographic Conferencing , 2020 .

[7]  David Elkouss,et al.  Efficient reconciliation protocol for discrete-variable quantum key distribution , 2009, 2009 IEEE International Symposium on Information Theory.

[8]  V. V. Kuzmin,et al.  Scalable repeater architectures for multi-party states , 2019, npj Quantum Information.

[9]  Alberto Morello,et al.  DVB-S2: The Second Generation Standard for Satellite Broad-Band Services , 2006, Proceedings of the IEEE.

[10]  Michael Epping,et al.  Robust entanglement distribution via quantum network coding , 2016 .

[11]  Jian-Wei Pan,et al.  Experimental quantum secret sharing and third-man quantum cryptography. , 2005, Physical review letters.

[12]  J. Eisert,et al.  Quantum network routing and local complementation , 2018, npj Quantum Information.

[13]  Masahito Hayashi,et al.  Exponential Decreasing Rate of Leaked Information in Universal Random Privacy Amplification , 2009, IEEE Transactions on Information Theory.

[14]  Reply to “Comment on ‘Fully device-independent conference key agreement' ” , 2019, Physical Review A.

[15]  Hoi-Kwong Lo,et al.  Multi-partite quantum cryptographic protocols with noisy GHZ States , 2007, Quantum Inf. Comput..

[16]  T. Jennewein,et al.  Experimental three-photon quantum nonlocality under strict locality conditions , 2013, Nature Photonics.

[17]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[18]  Rupert Ursin,et al.  An entanglement-based wavelength-multiplexed quantum communication network , 2018, Nature.

[19]  Michael Epping,et al.  Multi-partite entanglement can speed up quantum key distribution in networks , 2016, 1612.05585.

[20]  Hermann Kampermann,et al.  Finite-key effects in multipartite quantum key distribution protocols , 2018, New Journal of Physics.

[21]  Michael Epping,et al.  Large-scale quantum networks based on graphs , 2015, 1504.06599.

[22]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[23]  Eneet Kaur,et al.  Multipartite entanglement and secret key distribution in quantum networks , 2019 .

[24]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[25]  D. Markham,et al.  Graph states for quantum secret sharing , 2008, 0808.1532.

[26]  Serge Fehr,et al.  Sampling in a Quantum Population, and Applications , 2009, CRYPTO.

[27]  Comment on “Fully device-independent conference key agreement” , 2019, Physical Review A.

[28]  Hoi-Kwong Lo,et al.  Conference key agreement and quantum sharing of classical secrets with noisy GHZ states , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[29]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[30]  Holger F. Hofmann,et al.  Clock synchronization using maximal multipartite entanglement , 2012, 1203.4300.

[31]  Francesco Graffitti,et al.  Design considerations for high-purity heralded single-photon sources , 2018, Physical Review A.

[32]  Hermann Kampermann,et al.  Conference key agreement with single-photon interference , 2019, New Journal of Physics.

[33]  S. Wehner,et al.  Fully device-independent conference key agreement , 2017, 1708.00798.

[34]  Matej Pivoluska,et al.  Layered quantum key distribution , 2017, 1709.00377.

[35]  Yao Fu,et al.  Long-distance measurement-device-independent multiparty quantum communication. , 2014, Physical review letters.

[36]  J. F. Dynes,et al.  Cambridge quantum network , 2019, npj Quantum Information.

[37]  Stefano Pirandola,et al.  End-to-end capacities of a quantum communication network , 2019, Communications Physics.

[38]  Christoph Pacher,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[39]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[40]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[41]  M P Almeida,et al.  Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing. , 2011, Optics express.

[42]  W. Dur,et al.  Modular architectures for quantum networks , 2017, 1711.02606.

[43]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.