Hadwiger and Helly-type theorems for disjoint unit spheres in R3
暂无分享,去创建一个
[1] Tom C. Brown. Common Transversals , 1976, J. Comb. Theory, Ser. A.
[2] János Pach,et al. Common Tangents to Four Unit Balls in R3 , 2001, Discret. Comput. Geom..
[3] L. Danzer. Über ein Problem aus der kombinatorischen Geometrie , 1957 .
[4] E. Helly,et al. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten , 1930 .
[5] JE MET,et al. Wiskundige Opgaven , 1892 .
[6] Helge Tverberg,et al. Proof of grünbaum's conjecture on common transversals for translates , 1989, Discret. Comput. Geom..
[7] H. Debrunner,et al. Helly Type Theorems Derived from Basic Singular Homology , 1970 .
[8] Nina Amenta,et al. Helly-type theorems and Generalized Linear Programming , 1994, Discret. Comput. Geom..
[9] J. Matousek,et al. Using The Borsuk-Ulam Theorem , 2007 .
[10] Subhash Suri,et al. Geometric permutations of balls with bounded size disparity , 2001, Comput. Geom..
[11] M. Katchalski. A conjecture of Grünbaum on common transversals. , 1986 .
[12] Ferenc Fodor,et al. A Helly-type transversal theorem for n-dimensional unit balls , 2006 .
[13] Rephael Wenger,et al. Helly-Type Theorems and Geometric Transversals , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[14] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .
[15] B. Grünbaum. Common Transversals for Families of Sets , 1960 .
[16] Xavier Goaoc,et al. Geometric permutations of disjoint unit spheres , 2005, Comput. Geom..
[17] R. Pollack,et al. Geometric Transversal Theory , 1993 .
[18] Subhash Suri,et al. A Constant Bound for Geometric Permutations of Disjoint Unit Balls , 2003, Discret. Comput. Geom..
[19] Ted G. Lewis,et al. A Helly-Type Theorem for Line Transversals to Disjoint Unit Balls , 2003, Discret. Comput. Geom..
[20] Jirí Matousek,et al. No Helly Theorem for Stabbing Translates by Lines in R3 , 2004, Discret. Comput. Geom..
[21] H. Hadwiger. Ueber Eibereiche mit gemeinsamer Treffgeraden , 1957 .
[22] Frank Sottile,et al. The Envelope of Lines Meeting a Fixed Line and Tangent to Two Spheres , 2005, Discret. Comput. Geom..