Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals

We report a controllable wet method for effective decoration of 2-dimensional (2D) molybdenum disulfide (MoS2) layers with Au nanoparticles (NPs). Au NPs can be selectively formed on the edge sites or defective sites of MoS2 layers. The Au-MoS2 nano-composites are formed by non-covalent bond. The size distribution, morphology and density of the metal nanoparticles can be tuned by changing the defect density in MoS2 layers. Field effect transistors were directly fabricated by placing ion gel gate dielectrics on Au-decorated MoS2 layers without the need to transfer these MoS2 layers to SiO2/Si substrates for bottom gate devices. The ion gel method allows probing the intrinsic electrical properties of the as-grown and Au-decorated MoS2 layers. This study shows that Au NPs impose remarkable p-doping effects to the MoS2 transistors without degrading their electrical characteristics.

[1]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[2]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[3]  J. Baumberg,et al.  Actively tuned plasmons on elastomerically driven Au nanoparticle dimers. , 2010, Nano letters.

[4]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[5]  K. Ostrikov,et al.  Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform. , 2012, Chemical communications.

[6]  Z. Han,et al.  Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing. , 2013, Chemical communications.

[7]  C. Lenardi,et al.  XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions , 1999 .

[8]  T. Jaramillo,et al.  Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. , 2011, Nano letters.

[9]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[10]  N. Zheng,et al.  Small Adsorbate‐Assisted Shape Control of Pd and Pt Nanocrystals , 2012, Advanced materials.

[11]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[12]  A. Reina,et al.  Work function engineering of graphene electrode via chemical doping. , 2010, ACS nano.

[13]  Zhiyuan Zeng,et al.  Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets , 2013, Nature Communications.

[14]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[15]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[16]  Z. Yin,et al.  Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. , 2013, Small.

[17]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[18]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[19]  R. Jin,et al.  Atomically precise gold nanocrystal molecules with surface plasmon resonance , 2012, Proceedings of the National Academy of Sciences.

[20]  A. Kis,et al.  Breakdown of high-performance monolayer MoS2 transistors. , 2012, ACS nano.

[21]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[22]  Hongjian Yan,et al.  Photocatalytic H2 Evolution on MoS2/CdS Catalysts under Visible Light Irradiation , 2010 .

[23]  Yu-Chuan Lin,et al.  Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. , 2012, Nanoscale.

[24]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[25]  Lain-Jong Li,et al.  Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene‐Protected 3D Ni Foams , 2013, Advanced materials.

[26]  J. Brivio,et al.  Ripples and layers in ultrathin MoS2 membranes. , 2011, Nano letters.

[27]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[28]  J. Nørskov,et al.  Hydrogen evolution on nano-particulate transition metal sulfides. , 2008, Faraday discussions.

[29]  E. D. Crozier,et al.  Structures of exfoliated single layers of WS 2 , MoS 2 , and MoSe 2 in aqueous suspension , 2002 .

[30]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[31]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[32]  Jian Yang,et al.  Melamine assisted one-pot synthesis of Au nanoflowers and their catalytic activity towards p-nitrophenol , 2012 .

[33]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[34]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[35]  Clausen,et al.  Atomic-scale structure of single-layer MoS2 nanoclusters , 2000, Physical review letters.

[36]  C. Fan,et al.  Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. , 2012, Analytical chemistry.

[37]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[38]  Kenji Watanabe,et al.  Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure , 2007, Science.

[39]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[40]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[41]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[42]  R. F. Howe,et al.  The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO₂ nanoparticles. , 2011, Nature chemistry.

[43]  Young Hee Lee,et al.  Enhancing the conductivity of transparent graphene films via doping , 2010, Nanotechnology.

[44]  Chee Lip Gan,et al.  Synthesis of hexagonal close-packed gold nanostructures. , 2011, Nature communications.

[45]  B. Chakraborty,et al.  Symmetry-dependent phonon renormalization in monolayer MoS2transistor , 2012, Physical Review B.

[46]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[47]  Helmuth Berger,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[48]  A. Splendiani,et al.  Emerging Photoluminescence in Monolayer , 2010 .

[49]  Peng Chen,et al.  Electrical Detection of DNA Hybridization with Single‐Base Specificity Using Transistors Based on CVD‐Grown Graphene Sheets , 2010, Advanced materials.