Second-Order Equations With Nonnegative Characteristic Form
暂无分享,去创建一个
I. The First Boundary Value Problem.- 1. Notation. Auxiliary results. Formulation of the first boundary value problem.- 2. A priori estimates in the spaces Lp (?).- 3. Existence of a solution of the first boundary value problem in the spaces Lp (?).- 4. Existence of a weak solution of the first boundary value problem in Hilbert space.- 5. Solution of the first boundary value problem by the method of elliptic regularization.- 6. Uniqueness theorems for weak solutions of the first boundary value problem.- 7. A lemma on nonnegative quadratic forms.- 8. On smoothness of weak solutions of the first boundary value problem. Conditions for existence of solutions with bounded derivatives.- 9. On conditions for the existence of a solution of the first boundary value problem in the spaces of S. L. Sobolev.- II. On the Local Smoothness of Weak Solutions and Hypoellipticity of Second Order Differential Equations.- 1. The spaces Hs.- 2. Some properties of pseudodifferential operators.- 3. A necessary condition for hypoellipticity.- 4. Sufficient conditions for local smoothness of weak solutions and hypoellipticity of differential operators.- 5. A priori estimates and hypoellipticity theorems for the operators of Hormander.- 6. A priori estimates and hypoellipticity theorems for general second order differential equations.- 7. On the solution of the first boundary value problem in nonsmooth domains. The method of M. V. Keldys.- 8. On hypoellipticity of second order differential operators with analytic coefficients.- III. Additional Topics.- 1. Qualitative properties of solutions of second order equations with non- negative characteristic form.- 2. The Cauchy problem for degenerating second order hyperbolic equations.- 3. Necessary conditions for correctness of the Cauchy problem for second order equations.