Interpretation of Holographic and Lorentz Images of an Array of Reverse Biased P-N Junctions in a Semi-Infinite Specimen

The problem of observing reverse-biased p-n junctions by means of transmission electron microscopy techniques is very challenging both from the experimental and theoretical points of view. In particular, in addition to standard Lorentz microscopy techniques, whose image contrast is able to give some information on the region of high field, also holographic methods have been successfully applied and an interference map of the twodimensional phase on the specimen plane obtained. In this work we consider, in particular, the theoretical and interpretative aspects, as we have improved a model for the electric field associated to a periodic array of alternating p and n stripes lying in a half plane (physically corresponding to an array of zero-width step junctions) by taking into account that the junctions are tilted with respect to the specimen edge.