Certifying numerical estimates of spectral gaps

Abstract We establish a lower bound on the spectral gap of the Laplace operator on special linear groups using conic optimisation. In particular, this provides a constructive (but computer assisted) proof that these groups have the Kazhdan property (T). Software for such optimisation for other finitely presented groups is provided.

[1]  L. Tunçel Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization , 2010 .

[2]  N. Ozawa NONCOMMUTATIVE REAL ALGEBRAIC GEOMETRY OF KAZHDAN’S PROPERTY (T) , 2013, Journal of the Institute of Mathematics of Jussieu.

[3]  Konrad Schmuedgen Noncommutative Real Algebraic Geometry Some Basic Concepts and First Ideas , 2009 .

[4]  Real Closed Separation Theorems and Applications to Group Algebras , 2011, 1110.5619.

[5]  Alain Valette,et al.  Kazhdan's Property (T): KAZHDAN'S PROPERTY (T) , 2008 .

[6]  Yehuda Shalom,et al.  Bounded generation and Kazhdan’s property (T) , 1999 .

[7]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[8]  Tim Netzer,et al.  Kazhdan’s Property (T) via Semidefinite Optimization , 2015, Exp. Math..

[9]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[10]  Marc Burger,et al.  Kazhdan constants for SL (3, Z). , 1991 .

[11]  Stephen P. Boyd,et al.  Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding , 2013, Journal of Optimization Theory and Applications.

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  Warwick Tucker,et al.  Validated Numerics: A Short Introduction to Rigorous Computations , 2011 .

[15]  Uniform Kazhdan constant for some families of linear groups , 2006, math/0612390.

[16]  Martin Kassabov,et al.  Kazhdan Constants for Sln(Z) , 2005, Int. J. Algebra Comput..

[17]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[18]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[19]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[20]  Koji Fujiwara,et al.  Computing Kazhdan Constants by Semidefinite Programming , 2019, Exp. Math..

[21]  Tim Netzer Real Algebraic Geometry and its Applications , 2016, 1606.07284.