A Clustering Particle Swarm Optimizer for Locating and Tracking Multiple Optima in Dynamic Environments

In the real world, many optimization problems are dynamic. This requires an optimization algorithm to not only find the global optimal solution under a specific environment but also to track the trajectory of the changing optima over dynamic environments. To address this requirement, this paper investigates a clustering particle swarm optimizer (PSO) for dynamic optimization problems. This algorithm employs a hierarchical clustering method to locate and track multiple peaks. A fast local search method is also introduced to search optimal solutions in a promising subregion found by the clustering method. Experimental study is conducted based on the moving peaks benchmark to test the performance of the clustering PSO in comparison with several state-of-the-art algorithms from the literature. The experimental results show the efficiency of the clustering PSO for locating and tracking multiple optima in dynamic environments in comparison with other particle swarm optimization models based on the multiswarm method.

[1]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[2]  Shengxiang Yang,et al.  Associative Memory Scheme for Genetic Algorithms in Dynamic Environments , 2006, EvoWorkshops.

[3]  Xin Yao,et al.  Population-Based Incremental Learning With Associative Memory for Dynamic Environments , 2008, IEEE Transactions on Evolutionary Computation.

[4]  Hussein A. Abbass,et al.  Multiobjective optimization for dynamic environments , 2005, 2005 IEEE Congress on Evolutionary Computation.

[5]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[6]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[7]  Hendrik Richter,et al.  Detecting change in dynamic fitness landscapes , 2009, 2009 IEEE Congress on Evolutionary Computation.

[8]  Xin Yao,et al.  Benchmark Generator for CEC'2009 Competition on Dynamic Optimization , 2008 .

[9]  Jürgen Branke,et al.  A Multi-population Approach to Dynamic Optimization Problems , 2000 .

[10]  Shengxiang Yang,et al.  Hyper-selection in dynamic environments , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[11]  Shengxiang Yang,et al.  Genetic Algorithms with Memory- and Elitism-Based Immigrants in Dynamic Environments , 2008, Evolutionary Computation.

[12]  René Thomsen,et al.  Multimodal optimization using crowding-based differential evolution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[13]  Xiaodong Li,et al.  Adaptively choosing niching parameters in a PSO , 2006, GECCO.

[14]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[15]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[16]  Changhe Li,et al.  Fast Multi-Swarm Optimization for Dynamic Optimization Problems , 2008, 2008 Fourth International Conference on Natural Computation.

[17]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[18]  Shengxiang Yang,et al.  Evolutionary Computation in Dynamic and Uncertain Environments , 2007, Studies in Computational Intelligence.

[19]  Martin Middendorf,et al.  A Hierarchical Particle Swarm Optimizer for Dynamic Optimization Problems , 2004, EvoWorkshops.

[20]  John J. Grefenstette,et al.  Genetic Algorithms for Changing Environments , 1992, PPSN.

[21]  Jürgen Branke,et al.  Optimization in Dynamic Environments , 2002 .

[22]  Changhe Li,et al.  A clustering particle swarm optimizer for dynamic optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[23]  R.W. Morrison,et al.  Triggered hypermutation revisited , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[24]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[25]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[26]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[27]  R. Brits,et al.  Solving systems of unconstrained equations using particle swarm optimization , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[28]  Shengxiang Yang,et al.  Triggered Memory-Based Swarm Optimization in Dynamic Environments , 2007, EvoWorkshops.

[29]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[30]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[31]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[32]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[33]  Antonina Starita,et al.  Particle swarm optimization for multimodal functions: a clustering approach , 2008 .

[34]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[35]  Xin Yao,et al.  Experimental study on population-based incremental learning algorithms for dynamic optimization problems , 2005, Soft Comput..

[36]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[37]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[38]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[39]  Shengxiang Yang,et al.  Hyper-learning for population-based incremental learning in dynamic environments , 2009, 2009 IEEE Congress on Evolutionary Computation.

[40]  Changhe Li,et al.  A Generalized Approach to Construct Benchmark Problems for Dynamic Optimization , 2008, SEAL.

[41]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.

[42]  Xiaodong Li,et al.  Using regression to improve local convergence , 2007, 2007 IEEE Congress on Evolutionary Computation.

[43]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer and its adaptive variant , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[44]  Xiaodong Li,et al.  A particle swarm model for tracking multiple peaks in a dynamic environment using speciation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[45]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.