Mesoporous CuO with full spectrum absorption for photothermal conversion in direct absorption solar collectors

[1]  Xiaoke Li,et al.  The stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application , 2020 .

[2]  H. Bian,et al.  Copper(II)-β-cyclodextrin and CuO functionalized graphene oxide composite for fast removal of thiophenic sulfides with high efficiency. , 2020, Carbohydrate polymers.

[3]  C. Zou,et al.  An experimental study on β-cyclodextrin modified carbon nanotubes nanofluids for the direct absorption solar collector (DASC): Specific heat capacity and photo-thermal conversion performance , 2020 .

[4]  Robert A. Taylor,et al.  A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors , 2020 .

[5]  Shijo Thomas,et al.  Optimisation of thermo-optical properties of SiO2/Ag–CuO nanofluid for direct absorption solar collectors , 2019 .

[6]  Huaqing Xie,et al.  Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors , 2019, Applied Energy.

[7]  Omar Z. Sharaf,et al.  Ultrastable plasmonic nanofluids in optimized direct absorption solar collectors , 2019, Energy Conversion and Management.

[8]  Qiang Li,et al.  Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion , 2019, Solar Energy.

[9]  Huaqing Xie,et al.  Au nanoparticles supported on Bi2WO6 nanosheets for broad-band absorption and good solar thermal conversion , 2019, Journal of Materials Science: Materials in Electronics.

[10]  Huaqing Xie,et al.  Au–Ag alloy nanoparticles supported on ordered mesoporous carbon (CMK-3) with remarkable solar thermal conversion efficiency , 2019, Applied Physics A.

[11]  T. Ma,et al.  Photoinduced Polyacrylate Based Polymer Electrolyte for Quasi-solid State Dye Sensitized Solar Cell Application , 2019, Engineered Science.

[12]  C. Vallo,et al.  Absorber materials based on polymer nanocomposites containing silver nanoparticles for solar thermal collectors , 2018, Solar Energy.

[13]  Liangbing Hu,et al.  Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification , 2018 .

[14]  Bong Jae Lee,et al.  Optimization of the spectral absorption coefficient of a plasmonic nanofluid for a direct absorption solar collector , 2018, Solar Energy.

[15]  Xiujian Zhao,et al.  Novel photoactivation promotes catalytic abatement of CO on CuO mesoporous nanosheets with full solar spectrum illumination , 2018 .

[16]  Y. Xuan,et al.  Investigation on thermo-optical properties of CuO/Ag plasmonic nanofluids , 2018 .

[17]  Na Lu,et al.  Influence of Anti-reflecting Nature of MgF2 Embedded Electrospun TiO2 Nanofibers Based Photoanode to Improve the Photoconversion Efficiency of DSSC , 2018 .

[18]  Y. Xuan,et al.  Investigation of optical absorption and photothermal conversion characteristics of binary CuO/ZnO nanofluids , 2017 .

[19]  Lei Shi,et al.  Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation , 2017 .

[20]  Guohua Liu,et al.  Solar water evaporation by black photothermal sheets , 2017 .

[21]  Meijie Chen,et al.  Preparation of Au–Ag bimetallic nanoparticles for enhanced solar photothermal conversion , 2017 .

[22]  S. Guan,et al.  2D graphitic-C3N4 hybridized with 1D flux-grown Na-modified K2Ti6O13 nanobelts for enhanced simulated sunlight and visible-light photocatalytic performance , 2017 .

[23]  Meijie Chen,et al.  Investigation into Au nanofluids for solar photothermal conversion , 2017 .

[24]  Tahereh B. Gorji,et al.  A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs) , 2017 .

[25]  N. Chen,et al.  Complementary optical absorption and enhanced solar thermal conversion of CuO-ATO nanofluids , 2017 .

[26]  Xiaodong Chen,et al.  High‐Performance Photothermal Conversion of Narrow‐Bandgap Ti2O3 Nanoparticles , 2017, Advanced materials.

[27]  D. Wen,et al.  Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors , 2016 .

[28]  A. Ranjbar,et al.  A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids , 2016 .

[29]  S. Delfani,et al.  Photothermal properties of graphene nanoplatelets nanofluid for low-temperature direct absorption solar collectors , 2016 .

[30]  A. Alemrajabi,et al.  Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector , 2016 .

[31]  Bong Jae Lee,et al.  Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid , 2016 .

[32]  Xuan Wu,et al.  Hierarchical CuO Colloidosomes and Their Structure Enhanced Photothermal Catalytic Activity , 2016 .

[33]  S. Delfani,et al.  Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation , 2016 .

[34]  Xiaoze Du,et al.  Dependence of Photothermal Conversion Characteristics on Different Nanoparticle Dispersions. , 2015, Journal of nanoscience and nanotechnology.

[35]  Nasrudin Abd Rahim,et al.  Analyses of Entropy Generation and Pressure Drop for a Conventional Flat Plate Solar Collector Using Different Types of Metal Oxide Nanofluids , 2013 .

[36]  J. D. L. Fuente,et al.  Mesoporous Copper Oxide as a New Combustion Catalyst for Composite Propellants , 2013 .

[37]  Bong Jae Lee,et al.  Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption , 2012 .

[38]  E. Sani,et al.  Potential of carbon nanohorn-based suspensions for solar thermal collectors , 2011 .

[39]  Saad Mekhilef,et al.  A review on solar energy use in industries , 2011 .

[40]  M. Hoepfner,et al.  Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[41]  Soteris A. Kalogirou,et al.  Solar thermal collectors and applications , 2004 .

[42]  William D. Drotning,et al.  Optical properties of solar-absorbing oxide particles suspended in a molten salt heat transfer fluid☆ , 1978 .