Quasiperiodic and Lyndon episturmian words
暂无分享,去创建一个
[1] G. Rauzy,et al. Mots infinis en arithmétique , 1984, Automata on Infinite Words.
[2] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[3] Gwénaël Richomme,et al. On Morphisms Preserving Infinite Lyndon Words , 2007, Discret. Math. Theor. Comput. Sci..
[4] Jean Berstel,et al. Sturmian and episturmian words: a survey of some recent results , 2007 .
[5] Fabien Durand,et al. A characterization of substitutive sequences using return words , 1998, Discret. Math..
[6] Jean-Pierre Borel,et al. Quelques mots sur la droite projective réelle , 1993 .
[7] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[8] Gwénaël Richomme,et al. Quasiperiodic Infinite Words: Some Answers (Column: Formal Language Theory) , 2004, Bull. EATCS.
[9] Guy Melançon. Lyndon factorization of sturmian words , 2000, Discret. Math..
[10] Giuseppe Pirillo,et al. Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..
[11] Amy Glen,et al. Order and quasiperiodicity in episturmian words , 2007 .
[12] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[13] Ethan M. Coven,et al. Sequences with minimal block growth , 2005, Mathematical systems theory.
[14] Solomon Marcus. Bridging Two Hierarchies of Infinite Words , 2002, J. Univers. Comput. Sci..
[15] Jacques Justin,et al. Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..
[16] Alfred J. van der Poorten,et al. Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..
[17] Giuseppe Pirillo,et al. Episturmian Words: Shifts, Morphisms And Numeration Systems , 2004, Int. J. Found. Comput. Sci..
[18] Costas S. Iliopoulos,et al. Optimal Superprimitivity Testing for Strings , 1991, Inf. Process. Lett..
[19] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[20] Giuseppe Pirillo,et al. Characterizations of finite and infinite episturmian words via lexicographic orderings , 2008, Eur. J. Comb..
[21] Laurent Vuillon,et al. A Characterization of Balanced Episturmian Sequences , 2007, Electron. J. Comb..
[22] M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .
[23] Gwénaël Richomme. Conjugacy of morphisms and Lyndon decomposition of standard Sturmian words , 2007, Theor. Comput. Sci..
[24] Gwénaël Richomme,et al. Directive words of episturmian words: equivalences and normalization , 2008, RAIRO Theor. Informatics Appl..
[25] P. Yew,et al. 7. Concluding Remarks , 2019, Trade in the Ancient Mediterranean.
[26] Ethan M. Coven,et al. Sequences with minimal block growth II , 1973, Mathematical systems theory.
[27] Gwénaël Richomme,et al. Quasiperiodic Sturmian words and morphisms , 2006, Theor. Comput. Sci..
[28] Aldo de Luca,et al. Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..
[29] G. Rauzy. Nombres algébriques et substitutions , 1982 .
[30] Jacques Justin. Episturmian morphisms and a Galois theorem on continued fractions , 2005, RAIRO Theor. Informatics Appl..
[31] Giuseppe Pirillo,et al. Episturmian words and episturmian morphisms , 2002, Theor. Comput. Sci..
[32] Andrzej Ehrenfeucht,et al. Efficient Detection of Quasiperiodicities in Strings , 1993, Theor. Comput. Sci..
[33] Sébastien Ferenczi,et al. Complexity of sequences and dynamical systems , 1999, Discret. Math..
[34] Costas S. Iliopoulos,et al. Quasiperiodicity and String Covering , 1999, Theor. Comput. Sci..
[35] Gwénaël Richomme,et al. A Local Balance Property of Episturmian Words , 2007, Developments in Language Theory.
[36] Luca Q. Zamboni,et al. Descendants of Primitive Substitutions , 1999, Theory of Computing Systems.
[37] Laurent Vuillon,et al. Return words in Sturmian and episturmian words , 2000, RAIRO Theor. Informatics Appl..
[38] Aldo de Luca,et al. A Combinatorial Property of the Fibonacci Words , 1981, Inf. Process. Lett..
[39] Gwénaël Richomme. Conjugacy and episturmian morphisms , 2003, Theor. Comput. Sci..
[40] R. Baer,et al. The Significance of the System of Subgroups for the Structure of the Group , 1939 .
[41] Patrice Séébold,et al. Fibonacci Morphisms and Sturmian Words , 1991, Theor. Comput. Sci..
[42] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[43] Giuseppe Pirillo,et al. On a characteristic property of ARNOUX-RAUZY sequences , 2002, RAIRO Theor. Informatics Appl..
[44] Valérie Berthé,et al. Initial powers of Sturmian sequences , 2006 .
[45] M. Crochemore,et al. String pattern matching for a deluge survival kit , 2002 .
[46] Thierry Monteil. Illumination dans les billards polygonaux et dynamique symbolique , 2005 .
[47] Amy Glen. A characterization of fine words over a finite alphabet , 2008, Theor. Comput. Sci..
[48] M. Lothaire. Combinatorics on words: Bibliography , 1997 .
[49] Luca Q. Zamboni,et al. A generalization of Sturmian sequences: Combinatorial structure and transcendence , 2000 .