Quasiperiodic and Lyndon episturmian words

Recently the second two authors characterized quasiperiodic Sturmian words, proving that a Sturmian word is non-quasiperiodic if and only if, it is an infinite Lyndon word. Here we extend this study to episturmian words (a natural generalization of Sturmian words) by describing all the quasiperiods of an episturmian word, which yields a characterization of quasiperiodic episturmian words in terms of their directive words. Even further, we establish a complete characterization of all episturmian words that are Lyndon words. Our main results show that, unlike the Sturmian case, there is a much wider class of episturmian words that are non-quasiperiodic, besides those that are infinite Lyndon words. Our key tools are morphisms and directive words, in particular normalized directive words, which we introduced in an earlier paper. Also of importance is the use of return words to characterize quasiperiodic episturmian words, since such a method could be useful in other contexts.

[1]  G. Rauzy,et al.  Mots infinis en arithmétique , 1984, Automata on Infinite Words.

[2]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[3]  Gwénaël Richomme,et al.  On Morphisms Preserving Infinite Lyndon Words , 2007, Discret. Math. Theor. Comput. Sci..

[4]  Jean Berstel,et al.  Sturmian and episturmian words: a survey of some recent results , 2007 .

[5]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[6]  Jean-Pierre Borel,et al.  Quelques mots sur la droite projective réelle , 1993 .

[7]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[8]  Gwénaël Richomme,et al.  Quasiperiodic Infinite Words: Some Answers (Column: Formal Language Theory) , 2004, Bull. EATCS.

[9]  Guy Melançon Lyndon factorization of sturmian words , 2000, Discret. Math..

[10]  Giuseppe Pirillo,et al.  Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..

[11]  Amy Glen,et al.  Order and quasiperiodicity in episturmian words , 2007 .

[12]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[13]  Ethan M. Coven,et al.  Sequences with minimal block growth , 2005, Mathematical systems theory.

[14]  Solomon Marcus Bridging Two Hierarchies of Infinite Words , 2002, J. Univers. Comput. Sci..

[15]  Jacques Justin,et al.  Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..

[16]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[17]  Giuseppe Pirillo,et al.  Episturmian Words: Shifts, Morphisms And Numeration Systems , 2004, Int. J. Found. Comput. Sci..

[18]  Costas S. Iliopoulos,et al.  Optimal Superprimitivity Testing for Strings , 1991, Inf. Process. Lett..

[19]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[20]  Giuseppe Pirillo,et al.  Characterizations of finite and infinite episturmian words via lexicographic orderings , 2008, Eur. J. Comb..

[21]  Laurent Vuillon,et al.  A Characterization of Balanced Episturmian Sequences , 2007, Electron. J. Comb..

[22]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[23]  Gwénaël Richomme Conjugacy of morphisms and Lyndon decomposition of standard Sturmian words , 2007, Theor. Comput. Sci..

[24]  Gwénaël Richomme,et al.  Directive words of episturmian words: equivalences and normalization , 2008, RAIRO Theor. Informatics Appl..

[25]  P. Yew,et al.  7. Concluding Remarks , 2019, Trade in the Ancient Mediterranean.

[26]  Ethan M. Coven,et al.  Sequences with minimal block growth II , 1973, Mathematical systems theory.

[27]  Gwénaël Richomme,et al.  Quasiperiodic Sturmian words and morphisms , 2006, Theor. Comput. Sci..

[28]  Aldo de Luca,et al.  Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..

[29]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[30]  Jacques Justin Episturmian morphisms and a Galois theorem on continued fractions , 2005, RAIRO Theor. Informatics Appl..

[31]  Giuseppe Pirillo,et al.  Episturmian words and episturmian morphisms , 2002, Theor. Comput. Sci..

[32]  Andrzej Ehrenfeucht,et al.  Efficient Detection of Quasiperiodicities in Strings , 1993, Theor. Comput. Sci..

[33]  Sébastien Ferenczi,et al.  Complexity of sequences and dynamical systems , 1999, Discret. Math..

[34]  Costas S. Iliopoulos,et al.  Quasiperiodicity and String Covering , 1999, Theor. Comput. Sci..

[35]  Gwénaël Richomme,et al.  A Local Balance Property of Episturmian Words , 2007, Developments in Language Theory.

[36]  Luca Q. Zamboni,et al.  Descendants of Primitive Substitutions , 1999, Theory of Computing Systems.

[37]  Laurent Vuillon,et al.  Return words in Sturmian and episturmian words , 2000, RAIRO Theor. Informatics Appl..

[38]  Aldo de Luca,et al.  A Combinatorial Property of the Fibonacci Words , 1981, Inf. Process. Lett..

[39]  Gwénaël Richomme Conjugacy and episturmian morphisms , 2003, Theor. Comput. Sci..

[40]  R. Baer,et al.  The Significance of the System of Subgroups for the Structure of the Group , 1939 .

[41]  Patrice Séébold,et al.  Fibonacci Morphisms and Sturmian Words , 1991, Theor. Comput. Sci..

[42]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[43]  Giuseppe Pirillo,et al.  On a characteristic property of ARNOUX-RAUZY sequences , 2002, RAIRO Theor. Informatics Appl..

[44]  Valérie Berthé,et al.  Initial powers of Sturmian sequences , 2006 .

[45]  M. Crochemore,et al.  String pattern matching for a deluge survival kit , 2002 .

[46]  Thierry Monteil Illumination dans les billards polygonaux et dynamique symbolique , 2005 .

[47]  Amy Glen A characterization of fine words over a finite alphabet , 2008, Theor. Comput. Sci..

[48]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[49]  Luca Q. Zamboni,et al.  A generalization of Sturmian sequences: Combinatorial structure and transcendence , 2000 .