A front-tracking method with projected interface conditions for compressible multi-fluid flows

A front-tracking method for compressible multi-fluid flows is presented, where marker points are used both for tracking fluid interfaces and also for constructing the Riemann problem on the interfaces. The Riemann problem between the two fluid phases (defined in the interface normal direction) is solved using the exact Riemann solver on the marker points. The solutions are projected onto fixed grid points and then extrapolated into the corresponding ghost-fluid regions, to be used as boundary conditions. Each fluid phase is solved separately as in the ghost-fluid method. The proposed procedures, especially the projection of the exact Riemann solutions onto the fluid grids, are designed to be simple and consistent in any spatial dimensions. Several multi-fluid problems, including the breakup of a water cylinder induced by the passage of a shock wave were computed in order to demonstrate the capability of the proposed method.

[1]  R. Fedkiw,et al.  A numerical method for two-phase flow consisting of separate compressible and incompressible regions , 2000 .

[2]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[3]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[4]  Xiangyu Hu,et al.  An interface interaction method for compressible multifluids , 2004 .

[5]  Randall J. LeVeque,et al.  One-Dimensional Front Tracking Based on High Resolution Wave Propagation Methods , 1995, SIAM J. Sci. Comput..

[6]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[7]  D. Joseph,et al.  Breakup of a liquid drop suddenly exposed to a high-speed airstream , 1999 .

[8]  Keh-Ming Shyue,et al.  An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems , 1998 .

[9]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[10]  Boo Cheong Khoo,et al.  A Real Ghost Fluid Method for the Simulation of Multimedium Compressible Flow , 2006, SIAM J. Sci. Comput..

[11]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[12]  Rémi Abgrall,et al.  A Simple Method for Compressible Multifluid Flows , 1999, SIAM J. Sci. Comput..

[13]  Meng-Sing Liou,et al.  A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme , 2007, J. Comput. Phys..

[14]  M. Liou A Sequel to AUSM , 1996 .

[15]  Qiang Zhang,et al.  Three-Dimensional Front Tracking , 1998, SIAM J. Sci. Comput..

[16]  Nikolaus A. Adams,et al.  On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow , 2009, J. Comput. Phys..

[17]  S. Osher,et al.  A new class of high accuracy TVD schemes for hyperbolic conservation laws. [Total Variation Diminishing] , 1985 .

[18]  Andrea Prosperetti,et al.  A numerical method for three-dimensional gas-liquid flow computations , 2004 .

[19]  Theo G. Theofanous,et al.  Adaptive characteristics-based matching for compressible multifluid dynamics , 2006, J. Comput. Phys..

[20]  R. Fedkiw,et al.  Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method , 2002 .

[21]  G. J. Li,et al.  Aerobreakup in Rarefied Supersonic Gas Flows , 2004 .

[22]  Hiroshi Terashima,et al.  A front-tracking/ghost-fluid method for fluid interfaces in compressible flows , 2009, J. Comput. Phys..

[23]  John E. Field,et al.  Shock-induced collapse of single cavities in liquids , 1992, Journal of Fluid Mechanics.

[24]  Joseph A. Schetz,et al.  Wave phenomena in liquid jet breakup in a supersonic crossflow , 1980 .

[25]  Boo Cheong Khoo,et al.  The ghost fluid method for compressible gas-water simulation , 2005 .

[26]  Richard Saurel,et al.  A Riemann Problem Based Method for the Resolution of Compressible Multimaterial Flows , 1997 .

[27]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[28]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[29]  Kazuyoshi Takayama,et al.  Numerical simulation of shock wave interaction with a water column , 2001 .

[30]  W. Lauterborn,et al.  Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary , 1975, Journal of Fluid Mechanics.

[31]  H. S. Udaykumar,et al.  Sharp Interface Cartesian Grid Method for Compressible Multiphase Flows , 2008 .

[32]  Timothy G. Leighton,et al.  Shock-induced collapse of a cylindrical air cavity in water: a Free-Lagrange simulation , 2000 .

[33]  M. Holt,et al.  Glimm's method applied to underwater explosions , 1981 .

[34]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[35]  G. J. Li,et al.  On the physics of aerobreakup , 2008 .

[36]  J. Glimm,et al.  A critical analysis of Rayleigh-Taylor growth rates , 2001 .

[37]  H. Chen,et al.  Two-Dimensional Simulation of Stripping Breakup of a Water Droplet , 2008 .

[38]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..