Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics

[1]  Wen-quan Wang,et al.  Molecular drivers and cells of origin in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine carcinoma , 2020, Experimental Hematology & Oncology.

[2]  Johannes G. Reiter,et al.  Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases , 2020, Nature Genetics.

[3]  Nicholas D. Camarda,et al.  Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma , 2020, Nature Genetics.

[4]  Rafael C. Schulman,et al.  DNA methylation disruption reshapes the hematopoietic differentiation landscape , 2020, Nature Genetics.

[5]  M. Stratton,et al.  Tobacco exposure and somatic mutations in normal human bronchial epithelium , 2019, Nature.

[6]  J. Pritchard,et al.  Evolutionary Persistence of DNA Methylation for Millions of Years after Ancient Loss of a De Novo Methyltransferase , 2019, Cell.

[7]  J. Ludden,et al.  Principles and Practice , 1998, Community-based Learning and Social Movements.

[8]  C. Johannessen,et al.  Genotype-Fitness Maps of EGFR-Mutant Lung Adenocarcinoma Chart the Evolutionary Landscape of Resistance for Combination Therapy Optimization. , 2020, Cell systems.

[9]  Howard Y. Chang,et al.  Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia , 2019, Nature Biotechnology.

[10]  William Stafford Noble,et al.  High-Throughput Single-Cell Sequencing with Linear Amplification. , 2019, Molecular cell.

[11]  Nir Friedman,et al.  Gene expression cartography , 2019, Nature.

[12]  Richard A. Moore,et al.  Clonal Decomposition and DNA Replication States Defined by Scaled Single-Cell Genome Sequencing , 2019, Cell.

[13]  Alexander van Oudenaarden,et al.  Unravelling cellular relationships during development and regeneration using genetic lineage tracing , 2019, Nature Reviews Molecular Cell Biology.

[14]  Christopher A. Miller,et al.  A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing , 2019, Nature Communications.

[15]  Mariella G. Filbin,et al.  An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma , 2019, Cell.

[16]  Matthew E. Ritchie,et al.  Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia. , 2019, Cell stem cell.

[17]  M. Loda,et al.  The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance , 2019, Clinical Cancer Research.

[18]  Z. Trajanoski,et al.  Next-generation computational tools for interrogating cancer immunity , 2019, Nature Reviews Genetics.

[19]  C. Swanton,et al.  Resolving genetic heterogeneity in cancer , 2019, Nature Reviews Genetics.

[20]  S. Dawson,et al.  Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia , 2019, Nature Communications.

[21]  J. Grimsby,et al.  RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues , 2019, Science.

[22]  Nathaniel D. Omans,et al.  Genotyping of Transcriptomes links somatic mutations and cell identity , 2019, Nature.

[23]  Martin A. Nowak,et al.  Growth dynamics in naturally progressing chronic lymphocytic leukaemia , 2019, Nature.

[24]  Rafael C. Schulman,et al.  Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL , 2019, Nature Communications.

[25]  Rafael C. Schulman,et al.  Epigenetic evolution and lineage histories of chronic lymphocytic leukemia , 2019, Nature.

[26]  Guo-Cheng Yuan,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[27]  Nicolai J. Birkbak,et al.  Neoantigen-directed immune escape in lung cancer evolution , 2019, Nature.

[28]  G. Pinkus,et al.  Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity , 2019, Cell.

[29]  Martin J. Aryee,et al.  Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics , 2019, Cell.

[30]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[31]  Guoji Guo,et al.  Revolutionizing immunology with single-cell RNA sequencing , 2019, Cellular & Molecular Immunology.

[32]  Marc J. Williams,et al.  Spatially constrained tumour growth affects the patterns of clonal selection and neutral drift in cancer genomic data , 2019, bioRxiv.

[33]  R. Satija,et al.  Integrative single-cell analysis , 2019, Nature Reviews Genetics.

[34]  P. Campbell,et al.  Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions , 2019, Nature Medicine.

[35]  S. Tsunoda,et al.  Age-related remodelling of oesophageal epithelia by mutated cancer drivers , 2019, Nature.

[36]  G. Getz,et al.  Comprehensive analysis of tumour initiation, spatial and temporal progression under multiple lines of treatment , 2018, bioRxiv.

[37]  Amos Tanay,et al.  Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma , 2018, Nature Medicine.

[38]  Anton Simeonov,et al.  KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance. , 2018, Cancer cell.

[39]  Howard Y. Chang,et al.  Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA , 2018, bioRxiv.

[40]  Lu Wen,et al.  Single-cell multiomics sequencing and analyses of human colorectal cancer , 2018, Science.

[41]  Peter J. Campbell,et al.  Somatic mutant clones colonize the human esophagus with age , 2018, Science.

[42]  Alice Giustacchini,et al.  Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing , 2019, Molecular cell.

[43]  Kerstin B. Meyer,et al.  Single-cell reconstruction of the early maternal–fetal interface in humans , 2018, Nature.

[44]  Douglas A. Lauffenburger,et al.  Analysis of Single-Cell RNA-Seq Identifies Cell-Cell Communication Associated with Tumor Characteristics , 2018, Cell reports.

[45]  Andrew C. Adey,et al.  Joint profiling of chromatin accessibility and gene expression in thousands of single cells , 2018, Science.

[46]  M. Rubin,et al.  A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers , 2018, Clinical Cancer Research.

[47]  Peter J. Campbell,et al.  Population dynamics of normal human blood inferred from somatic mutations , 2018, Nature.

[48]  George M. Church,et al.  Developmental barcoding of whole mouse via homing CRISPR , 2018, Science.

[49]  P. A. Futreal,et al.  High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics , 2018, Genome research.

[50]  A. van Oudenaarden,et al.  Single-Cell Transcriptomics Meets Lineage Tracing. , 2018, Cell stem cell.

[51]  William E. Allen,et al.  Three-dimensional intact-tissue sequencing of single-cell transcriptional states , 2018, Science.

[52]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[53]  Byungjin Hwang,et al.  Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements , 2018, Nature Communications.

[54]  K. Ballman,et al.  Somatic mutations precede acute myeloid leukemia years before diagnosis , 2018, Nature Medicine.

[55]  Peter J Park,et al.  Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data , 2018, Genome research.

[56]  Wyeth W. Wasserman,et al.  Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer , 2018, Cell.

[57]  R. Guigó,et al.  The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia , 2018, Nature Medicine.

[58]  D. Shibata,et al.  Spatial mutation patterns as markers of early colorectal tumor cell mobility , 2018, Proceedings of the National Academy of Sciences.

[59]  Johan Hartman,et al.  Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing , 2018, Cell.

[60]  Benjamin J. Raphael,et al.  Inferring Parsimonious Migration Histories for Metastatic Cancers , 2018, Nature Genetics.

[61]  Tracy T Batchelor,et al.  Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq , 2018, Science.

[62]  G. Mayhew,et al.  Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal , 2018, Cell.

[63]  Zoltan Szallasi,et al.  Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal , 2018, Cell.

[64]  T. Voet,et al.  Identification of the tumour transition states occurring during EMT , 2018, Nature.

[65]  C. Sander,et al.  Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets , 2018, Nature Genetics.

[66]  Matthew D. Young,et al.  Intra-tumour diversification in colorectal cancer at the single-cell level , 2018, Nature.

[67]  Steven J. M. Jones,et al.  The Immune Landscape of Cancer , 2018, Immunity.

[68]  A. Oudenaarden,et al.  Whole-organism clone tracing using single-cell sequencing , 2018, Nature.

[69]  O. Stegle,et al.  Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis , 2018, bioRxiv.

[70]  Rickard Sandberg,et al.  Identification of spatial expression trends in single-cell gene expression data , 2018, Nature Methods.

[71]  J. Junker,et al.  Simultaneous lineage tracing and cell-type identification using CRISPR/Cas9-induced genetic scars , 2018, Nature Biotechnology.

[72]  Till Acker,et al.  DNA methylation-based classification of central nervous system tumours , 2018, Nature.

[73]  James A. Gagnon,et al.  Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain , 2018, Nature Biotechnology.

[74]  Je-Gun Joung,et al.  SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells , 2018, Genome research.

[75]  Bernd Bodenmiller,et al.  Simultaneous Multiplexed Imaging of mRNA and Proteins with Subcellular Resolution in Breast Cancer Tissue Samples by Mass Cytometry , 2017, Cell systems.

[76]  J. Martín-Subero,et al.  Charting the dynamic epigenome during B-cell development. , 2017, Seminars in cancer biology.

[77]  Benjamin J. Raphael,et al.  The evolutionary history of 2,658 cancers , 2017, Nature.

[78]  S. Teichmann,et al.  SpatialDE: identification of spatially variable genes , 2018, Nature Methods.

[79]  D. Neuberg,et al.  The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy , 2017, Nature Communications.

[80]  Shawn M. Gillespie,et al.  Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer , 2017, Cell.

[81]  Jack Kuipers,et al.  Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors , 2017, Genome research.

[82]  B. Ebert,et al.  Clonal Hematopoiesis and Atherosclerosis. , 2017, New England Journal of Medicine.

[83]  H. Clevers,et al.  Cancer stem cells revisited , 2017, Nature Medicine.

[84]  Ken Chen,et al.  SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models , 2017, Genome Biology.

[85]  Vanessa M. Peterson,et al.  Multiplexed quantification of proteins and transcripts in single cells , 2017, Nature Biotechnology.

[86]  Sarah A. Teichmann,et al.  Faculty Opinions recommendation of histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. , 2017 .

[87]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[88]  William A. Flavahan,et al.  Epigenetic plasticity and the hallmarks of cancer , 2017, Science.

[89]  Bernd Bodenmiller,et al.  miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data , 2017, Nature Methods.

[90]  S. Gabriel,et al.  Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease , 2017, The New England journal of medicine.

[91]  F. Tang,et al.  Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells , 2017, Cell Research.

[92]  Andrea Sottoriva,et al.  Between-Region Genetic Divergence Reflects the Mode and Tempo of Tumor Evolution , 2017, Nature Genetics.

[93]  Hossein Farahani,et al.  E-scape: interactive visualization of single-cell phylogenetics and cancer evolution , 2017, Nature Methods.

[94]  T. Lappalainen,et al.  Associating cellular epigenetic models with human phenotypes , 2017, Nature Reviews Genetics.

[95]  Long Cai,et al.  seqFISH Accurately Detects Transcripts in Single Cells and Reveals Robust Spatial Organization in the Hippocampus , 2017, Neuron.

[96]  G. Sanguinetti,et al.  scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells , 2018, Nature Communications.

[97]  Sydney M. Shaffer,et al.  Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance , 2017, Nature.

[98]  R. Sandberg,et al.  Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia , 2017, Nature Medicine.

[99]  Shinya Sugimoto,et al.  Visualization and targeting of LGR5+ human colon cancer stem cells , 2017, Nature.

[100]  Nicolai J. Birkbak,et al.  Tracking the Evolution of Non‐Small‐Cell Lung Cancer , 2017, The New England journal of medicine.

[101]  Ashwini Naik,et al.  Phylogenetic ctDNA analysis depicts early stage lung cancer evolution , 2017, Nature.

[102]  Sebastian Pott Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells , 2017, bioRxiv.

[103]  Antonina V. Kurtova,et al.  A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer , 2017, Nature.

[104]  A. Schäffer,et al.  The evolution of tumour phylogenetics: principles and practice , 2017, Nature Reviews Genetics.

[105]  Shawn M. Gillespie,et al.  Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. , 2017, Cell stem cell.

[106]  R. Yi,et al.  Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition. , 2017, Cell stem cell.

[107]  Cigall Kadoch,et al.  Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. , 2017, Current opinion in genetics & development.

[108]  C. Walsh,et al.  Building a lineage from single cells: genetic techniques for cell lineage tracking , 2017, Nature Reviews Genetics.

[109]  Kirsten L. Frieda,et al.  Synthetic recording and in situ readout of lineage information in single cells , 2016, Nature.

[110]  Michael J. Ziller,et al.  Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells , 2016, Cell.

[111]  下川 真理子 Visualization and targeting of LGR5⁺ human colon cancer stem cells(審査報告) , 2017 .

[112]  Charles P. Lin,et al.  Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells , 2016, Cell.

[113]  Gang Huang,et al.  Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment , 2016, Nature.

[114]  Mariella G. Filbin,et al.  Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma , 2016, Nature.

[115]  James A. Gagnon,et al.  Whole-organism lineage tracing by combinatorial and cumulative genome editing , 2016, Science.

[116]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[117]  Francine E. Garrett-Bakelman,et al.  Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia , 2016, Nature Medicine.

[118]  Nicola D. Roberts,et al.  Genomic Classification and Prognosis in Acute Myeloid Leukemia. , 2016, The New England journal of medicine.

[119]  Alexander Davis,et al.  Computing tumor trees from single cells , 2016, Genome Biology.

[120]  N. Beerenwinkel,et al.  Tree inference for single-cell data , 2016, bioRxiv.

[121]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[122]  Lu Wen,et al.  Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas , 2016, Cell Research.

[123]  R. Young,et al.  A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation , 2016, Science.

[124]  H. Clevers,et al.  Reparative inflammation takes charge of tissue regeneration , 2016, Nature.

[125]  G. Getz,et al.  Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition , 2016, Nature Medicine.

[126]  C. Ponting,et al.  Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity , 2015, Nature Methods.

[127]  Shawn M. Gillespie,et al.  Insulator dysfunction and oncogene activation in IDH mutant gliomas , 2015, Nature.

[128]  Shuqiang Li,et al.  Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition , 2016, Nature Communications.

[129]  Jean Paul Thiery,et al.  EMT: 2016 , 2016, Cell.

[130]  Peter K. Sorger,et al.  Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method , 2015, Nature Communications.

[131]  Patrick F. Chinnery,et al.  The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease , 2015, Nature Reviews Genetics.

[132]  Martin A. Nowak,et al.  Mutations driving CLL and their evolution in progression and relapse , 2015, Nature.

[133]  C. Ponting,et al.  G&T-seq: parallel sequencing of single-cell genomes and transcriptomes , 2015, Nature Methods.

[134]  Beatriz Bellosillo,et al.  Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients , 2015, Nature Medicine.

[135]  M. Stratton,et al.  High burden and pervasive positive selection of somatic mutations in normal human skin , 2015, Science.

[136]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[137]  J. Marioni,et al.  High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin , 2015, Nature Biotechnology.

[138]  Joshua M. Korn,et al.  Studying clonal dynamics in response to cancer therapy using high-complexity barcoding , 2015, Nature Medicine.

[139]  L. Sequist,et al.  Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. , 2015, The Lancet. Oncology.

[140]  Martin A. Nowak,et al.  A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity , 2015, Nature.

[141]  Sohrab P. Shah,et al.  Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution , 2014, Nature.

[142]  C. Curtis,et al.  A Big Bang model of human colorectal tumor growth , 2015, Nature Genetics.

[143]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[144]  M. McCarthy,et al.  Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.

[145]  Martin Hirst,et al.  DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts , 2014, Nature Communications.

[146]  M. Nowak,et al.  Only three driver gene mutations are required for the development of lung and colorectal cancers , 2014, Proceedings of the National Academy of Sciences.

[147]  Michael J. Ziller,et al.  Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. , 2014, Cancer cell.

[148]  Amos Tanay,et al.  Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. , 2014, Cell reports.

[149]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[150]  S. Kasif,et al.  Hypermutable DNA chronicles the evolution of human colon cancer , 2014, Proceedings of the National Academy of Sciences.

[151]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[152]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[153]  A. Krešo,et al.  Evolution of the cancer stem cell model. , 2014, Cell stem cell.

[154]  J. Buhmann,et al.  Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry , 2014, Nature Methods.

[155]  Sean C. Bendall,et al.  Multiplexed ion beam imaging of human breast tumors , 2014, Nature Medicine.

[156]  R. Rabadán,et al.  Leukemogenesis Induced by an Activating β-catenin mutation in Osteoblasts , 2014, Nature.

[157]  Raul Rabadan,et al.  Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome , 2013, The Journal of experimental medicine.

[158]  Qing Li,et al.  Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue , 2013, Proceedings of the National Academy of Sciences.

[159]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[160]  O. Elemento,et al.  EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. , 2013, Cancer cell.

[161]  Zhong-yu Wang,et al.  New Insight into Ki67 Expression at the Invasive Front in Breast Cancer , 2013, PloS one.

[162]  A. McKenna,et al.  Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia , 2012, Cell.

[163]  Andrea Sottoriva,et al.  Single-molecule genomic data delineate patient-specific tumor profiles and cancer stem cell organization. , 2013, Cancer research.

[164]  Zohar Mukamel,et al.  Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues , 2012, Nature Genetics.

[165]  Yan Liu,et al.  EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations , 2012, Nature.

[166]  E. Shapiro,et al.  Cell lineage analysis of acute leukemia relapse uncovers the role of replication-rate heterogeneity and microsatellite instability. , 2012, Blood.

[167]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[168]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[169]  Carlo C. Maley,et al.  Clonal evolution in cancer , 2012, Nature.

[170]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[171]  Howard Cedar,et al.  Epigenetics of haematopoietic cell development , 2011, Nature Reviews Immunology.

[172]  A. Berns,et al.  Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. , 2011, Cancer cell.

[173]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[174]  D. Shibata Mutation and epigenetic molecular clocks in cancer. , 2011, Carcinogenesis.

[175]  Allon M Klein,et al.  Intestinal Stem Cell Replacement Follows a Pattern of Neutral Drift , 2010, Science.

[176]  Hans Clevers,et al.  Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells , 2010, Cell.

[177]  S. Tavaré,et al.  Many colorectal cancers are “flat” clonal expansions , 2009, Cell cycle.

[178]  D. Shibata,et al.  Inferring human stem cell behaviour from epigenetic drift , 2009, The Journal of pathology.

[179]  T. Duffy Portraits of an illness. , 2009, Transactions of the American Clinical and Climatological Association.

[180]  S. Morrison,et al.  Efficient tumor formation by single human melanoma cells , 2008, Nature.

[181]  Martin A. Nowak,et al.  Evolutionary dynamics on graphs , 2005, Nature.

[182]  S. Tavaré,et al.  Investigating stem cells in human colon by using methylation patterns , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[183]  S. Tavaré,et al.  Genetic reconstruction of individual colorectal tumor histories. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[184]  D. Shibata,et al.  Intestinal stem cell division and genetic diversity. A computer and experimental analysis. , 1997, The American journal of pathology.

[185]  J. Dick,et al.  Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell , 1997, Nature Medicine.

[186]  K. Kinzler,et al.  DNA methylation and genetic instability in colorectal cancer cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[187]  M. Luck,et al.  Genome sequencing , 1987, Nature.

[188]  G. Tricot,et al.  Bone marrow histology in myelodysplastic syndromes , 1984, British journal of haematology.

[189]  J. Trosko,et al.  AN INTEGRATIVE MODEL , 1978 .