Reconfigurable site-selective manipulation of atomic quantum systems in two-dimensional arrays of dipole traps

We trap atoms in versatile two-dimensional (2D) arrays of optical potentials, prepare flexible 2D spin configurations, perform site-selective coherent manipulation, and demonstrate the implementation of simultaneous measurements of different system properties, such as dephasing and decoherence. This approach for the flexible manipulation of atomic quantum systems is based on the combination of 2D arrays of microlenses and 2D arrays of liquid crystal light modulators. This offers extended types of control for the investigation of quantum degenerate gases, quantum information processing, and quantum simulations.

[1]  W. Ertmer,et al.  Coherent manipulation of atomic qubits in optical micropotentials , 2007, quant-ph/0702085.

[2]  William D. Phillips,et al.  Controlled exchange interaction between pairs of neutral atoms in an optical lattice , 2007, Nature.

[3]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[4]  Antoine Browaeys,et al.  Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator , 2004 .

[5]  D. Meschede,et al.  Analysis of dephasing mechanisms in a standing-wave dipole trap (12 pages) , 2005 .

[6]  V. Boyer,et al.  Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator , 2006 .

[7]  I. Lesanovsky,et al.  Collective Rydberg excitations of an atomic gas confined in a ring lattice , 2008, 0812.4894.

[8]  J. Cirac,et al.  High-temperature superfluidity of fermionic atoms in optical lattices. , 2002, Physical review letters.

[9]  Quantum many particle systems in ring-shaped optical lattices. , 2005, Physical review letters.

[10]  A. Sanpera,et al.  Manipulating mesoscopic multipartite entanglement with atom-light interfaces , 2009, 0907.4261.

[11]  Neutral atom quantum register. , 2004, Physical review letters.

[12]  Atom optics with microfabricated optical elements , 2001, quant-ph/0012030.

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  D Meschede,et al.  Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging. , 2008, Physical review letters.

[15]  P Grangier,et al.  Entanglement of two individual neutral atoms using Rydberg blockade. , 2009, Physical review letters.

[16]  Thomas G. Walker,et al.  Fast ground state manipulation of neutral atoms in microscopic optical traps. , 2006, Physical review letters.

[17]  I. Bloch Ultracold quantum gases in optical lattices , 2005 .

[18]  Thomas G. Walker,et al.  Demonstration of a neutral atom controlled-NOT quantum gate. , 2009, Physical review letters.

[19]  D. Weiss,et al.  Imaging single atoms in a three dimensional array , 2007 .

[20]  G. Birkl,et al.  Micro traps for quantum information processing and precision force sensing , 2007 .

[21]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[22]  P. Würtz,et al.  High-resolution scanning electron microscopy of an ultracold quantum gas , 2008 .