Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes

Abstract This paper introduces optimally-blended quadrature rules for isogeometric analysis and analyzes the numerical dispersion of the resulting discretizations. To quantify the approximation errors when we modify the inner products, we generalize the Pythagorean eigenvalue theorem of Strang and Fix. The proposed blended quadrature rules have advantages over alternative integration rules for isogeometric analysis on uniform and non-uniform meshes as well as for different polynomial orders and continuity of the basis. The optimally-blended schemes improve the convergence rate of the method by two orders with respect to the fully-integrated Galerkin method. The proposed technique increases the accuracy and robustness of isogeometric analysis for wave propagation problems.

[1]  Victor M. Calo,et al.  An energy-stable time-integrator for phase-field models , 2017 .

[2]  John A. Evans,et al.  Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis , 2014, 1404.7155.

[3]  Victor M. Calo,et al.  Computational cost estimates for parallel shared memory isogeometric multi-frontal solvers , 2014, Comput. Math. Appl..

[4]  Victor M. Calo,et al.  On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers , 2014 .

[5]  Timothy C. Warburton,et al.  Extreme-Scale AMR , 2010, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis.

[6]  Giancarlo Sangalli,et al.  Fast formation of isogeometric Galerkin matrices by weighted quadrature , 2016, 1605.01238.

[7]  Thomas J. R. Hughes,et al.  Isogeometric analysis of nearly incompressible large strain plasticity , 2014 .

[8]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[9]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[10]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[11]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[12]  Victor M. Calo,et al.  A survey on direct solvers for Galerkin methods , 2012 .

[13]  Victor M. Calo,et al.  The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..

[14]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[15]  S. P. Oliveira,et al.  Optimal blended spectral-element operators for acoustic wave modeling , 2007 .

[16]  Alessandro Reali,et al.  AN ISO GEOMETRIC ANALYSIS APPROACH FOR THE STUDY OF STRUCTURAL VIBRATIONS , 2006 .

[17]  M. Pauletti,et al.  Istituto di Matematica Applicata e Tecnologie Informatiche “ Enrico Magenes ” , 2014 .

[18]  Victor M. Calo,et al.  The value of continuity: Refined isogeometric analysis and fast direct solvers , 2017 .

[19]  Victor M. Calo,et al.  Gaussian quadrature rules for C1 quintic splines with uniform knot vectors , 2017, J. Comput. Appl. Math..

[20]  Lisandro Dalcin,et al.  PetIGA: High-Performance Isogeometric Analysis , 2013, ArXiv.

[21]  Victor M. Calo,et al.  Fast isogeometric solvers for explicit dynamics , 2014 .

[22]  V. M. Calo,et al.  Simulation of Engineering Applications Using Isogeometric Analysis , 2008 .

[23]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[24]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[25]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[26]  Victor M. Calo,et al.  Graph Grammar-Based Multi-Frontal Parallel Direct Solver for Two-Dimensional Isogeometric Analysis , 2012, ICCS.

[27]  Victor M. Calo,et al.  Gaussian quadrature for splines via homotopy continuation: Rules for C2 cubic splines , 2016, J. Comput. Appl. Math..

[28]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[29]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[30]  Victor M. Calo,et al.  Phase Field Modeling Using PetIGA , 2013, ICCS.

[31]  Victor M. Calo,et al.  Computational cost of isogeometric multi-frontal solvers on parallel distributed memory machines , 2015 .

[32]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[33]  Victor M. Calo,et al.  Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method , 2013 .

[34]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[35]  Gilbert Strang,et al.  THE FINITE ELEMENT METHOD AND APPROXIMATION THEORY , 1971 .

[36]  Mark Ainsworth,et al.  Explicit discrete dispersion relations for the acoustic wave equation in d-dimensions using finite element, spectral element and optimally blended schemes , 2010 .

[37]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[38]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[39]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[40]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[41]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[42]  Victor M. Calo,et al.  The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .

[43]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[44]  Mark Ainsworth,et al.  Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and NonStandard Reduced Integration , 2010, SIAM J. Numer. Anal..

[45]  Mrinal K. Sen,et al.  Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping , 2010 .

[46]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[47]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[48]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[49]  Jens Markus Melenk,et al.  An analysis of discretizations of the Helmholtz equation in L2 and in negative norms , 2014, Comput. Math. Appl..

[50]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[51]  Giancarlo Sangalli,et al.  Nonlinear static isogeometric analysis of arbitrarily curved Kirchhoff-Love shells , 2015, International Journal of Mechanical Sciences.

[52]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[53]  Dominik Schillinger,et al.  A collocated isogeometric finite element method based on Gauss–Lobatto Lagrange extraction of splines , 2017 .

[54]  Thomas J. R. Hughes,et al.  Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis , 2017 .

[55]  Victor M. Calo,et al.  Preconditioners based on the Alternating-Direction-Implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients , 2015, J. Comput. Appl. Math..

[56]  Mark Ainsworth,et al.  Dispersive and Dissipative Behavior of the Spectral Element Method , 2009, SIAM J. Numer. Anal..

[57]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[58]  Victor M. Calo,et al.  PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces , 2016, J. Comput. Sci..

[59]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[60]  Victor M. Calo,et al.  Dynamics with Matrices Possessing Kronecker Product Structure , 2015, ICCS.

[61]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[62]  Victor M. Calo,et al.  Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis , 2016 .

[63]  Habibou Maitournam,et al.  Selective and reduced numerical integrations for NURBS-based isogeometric analysis , 2015 .

[64]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[65]  Rachid Ait-Haddou,et al.  Explicit Gaussian quadrature rules for C1 cubic splines with symmetrically stretched knot sequences , 2015, J. Comput. Appl. Math..

[66]  Mrinal K. Sen,et al.  Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations , 2007 .

[67]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.