Dissolution Mechanism of Platinum in Sulfuric Acid Solution

[1]  Edward F. Holby,et al.  Thermodynamics and Hysteresis of Oxide Formation and Removal on Platinum (111) Surfaces , 2012 .

[2]  A. Nishikata,et al.  Application of channel flow double electrode to the study on platinum dissolution during potential cycling in sulfuric acid solution , 2011 .

[3]  A. Nishikata,et al.  Dissolution and surface area loss of platinum nanoparticles under potential cycling , 2011 .

[4]  M. Watanabe,et al.  Structural effects on the surface oxidation processes at Pt single-crystal electrodes studied by X-ray photoelectron spectroscopy , 2011 .

[5]  Yu Morimoto,et al.  First Principles Calculations on Site-Dependent Dissolution Potentials of Supported and Unsupported Pt Particles , 2010 .

[6]  M. Watanabe,et al.  In situ STM observation of morphological changes of the Pt(111) electrode surface during potential cycling in 10 mM HF solution. , 2010, Physical chemistry chemical physics : PCCP.

[7]  G. Ceder,et al.  Electrochemical stability of nanometer-scale Pt particles in acidic environments. , 2010, Journal of the American Chemical Society.

[8]  M. Umeda,et al.  Pt Degradation Mechanism in Concentrated Sulfuric Acid Studied Using Rotating Ring−Disk Electrode and Electrochemical Quartz Crystal Microbalance , 2009 .

[9]  A. Nishikata,et al.  Channel-Flow Double-Electrode Study on the Dissolution and Deposition Potentials of Platinum under Potential Cycles , 2009 .

[10]  Edward F. Holby,et al.  Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen , 2009 .

[11]  M. Matsumoto,et al.  In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media. , 2009, Journal of the American Chemical Society.

[12]  A. Asthagiri,et al.  Density functional theory study of the initial oxidation of the Pt(111) surface , 2009 .

[13]  Mitsuhiro Inoue,et al.  Cathode Platinum Degradation in Membrane Electrode Assembly Studied Using a Solid-State Electrochemical Cell , 2008 .

[14]  Shyam S. Kocha,et al.  Electrocatalyst Durability under Simulated Automotive Drive Cycles , 2008 .

[15]  J. Weaver,et al.  STM study of high-coverage structures of atomic oxygen on Pt(1 1 1): p(2 × 1) and Pt oxide chain structures , 2008 .

[16]  Edward F. Holby,et al.  Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells , 2007 .

[17]  Perla B. Balbuena,et al.  Chemical environment effects on the atomic oxygen absorption into Pt(111) subsurfaces , 2007 .

[18]  A. Nishikata,et al.  Effect of halogen ions on platinum dissolution under potential cycling in 0.5 M H2SO4 solution , 2007 .

[19]  Shyam S. Kocha,et al.  The Impact of Cycle Profile on PEMFC Durability , 2007 .

[20]  Mahlon Wilson,et al.  Scientific aspects of polymer electrolyte fuel cell durability and degradation. , 2007, Chemical reviews.

[21]  T. He,et al.  In situ electrochemical STM study of the coarsening of platinum islands at double-layer potentials. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[22]  P. Balbuena,et al.  Absorption of Atomic Oxygen into Subsurfaces of Pt(100) and Pt(111): Density Functional Theory Study , 2007 .

[23]  T. Uruga,et al.  In situ time-resolved dynamic surface events on the Pt/C cathode in a fuel cell under operando conditions. , 2007, Angewandte Chemie.

[24]  A. Nishikata,et al.  Electrochemical Quartz Crystal Microbalance Study on Dissolution of Platinum in Acid Solutions , 2007 .

[25]  K. Ota,et al.  Consumption Rate of Pt under Potential Cycling , 2007 .

[26]  Andreas Menzel,et al.  Stability and Dissolution of Platinum Surfaces in Perchloric Acid , 2006 .

[27]  Tomoki Akita,et al.  Characteristics of a Platinum Black Catalyst Layer with Regard to Platinum Dissolution Phenomena in a Membrane Electrode Assembly , 2006 .

[28]  J. Franc,et al.  Growth and Properties of Oxide Films on Platinum I. EIS and X-Ray Photoelectron Spectroscopy Studies , 2006 .

[29]  Deborah J. Myers,et al.  Effect of voltage on platinum dissolution : Relevance to polymer electrolyte fuel cells , 2006 .

[30]  Tomoki Akita,et al.  Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. , 2006, Physical chemistry chemical physics : PCCP.

[31]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[32]  L. J. Bregoli,et al.  A Reverse-Current Decay Mechanism for Fuel Cells , 2005 .

[33]  Karren L. More,et al.  Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions , 2005 .

[34]  M. Soriaga,et al.  Surface-oxide growth at platinum electrodes in aqueous H2SO4 , 2004 .

[35]  Robert M. Darling,et al.  Kinetic Model of Platinum Dissolution in PEMFCs , 2003 .

[36]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[37]  H. Urushibata,et al.  Effect of operational potential on performance decay rate in a phosphoric acid fuel cell , 1996 .

[38]  B. Conway,et al.  Electrochemical oxide film formation at noble metals as a surface-chemical process , 1995 .

[39]  Shimshon Gottesfeld,et al.  Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells , 1993 .

[40]  K. Ota,et al.  Dissolution of platinum anodes in sulfuric acid solution , 1988 .

[41]  T. Murahashi,et al.  Change of Pt Distribution in the Active Components of Phosphoric Acid Fuel Cell , 1988 .

[42]  Y. Hishinuma,et al.  Agglomeration of Platinum Particles Supported on Carbon in Phosphoric Acid , 1988 .

[43]  H. R. Kunz,et al.  Surface Area Loss of Platinum Supported on Carbon in Phosphoric Acid Electrolyte , 1980 .

[44]  K. F. Blurton,et al.  Surface area loss of platinum supported on graphite , 1978 .

[45]  A. Tseung,et al.  Loss of surface area by platinum and supported platinum black electrocatalyst , 1975 .

[46]  J.A.S. Bett,et al.  Crystallite growth of platinum dispersed on graphitized carbon black , 1974 .

[47]  P. Stonehart,et al.  Potential cycling effects on platinum electrocatalyst surfaces , 1973 .

[48]  Ronald Woods,et al.  A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 m sulphuric acid by cyclic voltammetry , 1972 .

[49]  D. T. Napp,et al.  A ring-disk electrode study of the current/potential behaviour of platinum in 1.0 M sulphuric and 0.1 M perchloric acids , 1970 .

[50]  J. F. Connolly,et al.  Recrystallization of Supported Platinum , 1967 .

[51]  F. Will Hydrogen Adsorption on Platinum Single Crystal Electrodes I . Isotherms and Heats of Adsorption , 1965 .

[52]  Rodney L. Borup,et al.  Durability of PEFCs at High Humidity Conditions , 2005 .

[53]  Kingo Itaya,et al.  In situ scanning tunneling microscopy of platinum (111) surface with the observation of monatomic steps , 1990 .

[54]  J.A.S. Bett,et al.  Crystallite growth of platinum dispersed on graphitized carbon black: II. Effect of liquid environment , 1976 .

[55]  T. Biegler,et al.  Limiting oxygen coverage on smooth platinum anodes in acid solution , 1969 .