Multiple sliding mode observers and unknown input estimations for Lipschitz nonlinear systems

SUMMARY Multiple sliding mode observers for state and unknown input estimations of a class of MIMO nonlinear systems are systematically developed in this paper. A new nonlinear transformation is formulated to divide the original system into two interconnected subsystems. The unknown inputs are assumed to be bounded and not necessarily Lipschitz, and do not require any matching condition. Under structural assumptions for the unknown input distribution matrix, the sliding mode terms of the nonlinear observer are designed to track their respective unknown inputs. Also, the unknown inputs can be reconstructed from the multiple sliding mode structurally. The conditions for asymptotic stability of estimation error dynamics are derived. Finally, simulation results are given to demonstrate the effectiveness of the proposed method. Copyright 2011 John Wiley & Sons, Ltd.

[1]  T. Floquet *,et al.  On the robust fault detection via a sliding mode disturbance observer , 2004 .

[2]  J. Barbot,et al.  Sliding mode observer for triangular input form , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[3]  S. Drakunov Sliding-mode observers based on equivalent control method , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[4]  Rajesh Rajamani,et al.  Quantitative fault estimation for a class of nonlinear systems , 2006, 2006 American Control Conference.

[5]  Sarah K. Spurgeon,et al.  Sliding mode observers for fault detection and isolation , 2000, Autom..

[6]  Arie Levant,et al.  Quasi-continuous high-order sliding-mode controllers , 2005, IEEE Transactions on Automatic Control.

[7]  Y. Soh,et al.  Robust observer with sliding mode estimation for nonlinear uncertain systems , 2007 .

[8]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[9]  A. Isidori Nonlinear Control Systems , 1985 .

[10]  Leonid Fridman,et al.  Backlash phenomenon observation and identification in electromechanical system , 2007 .

[11]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[12]  V. Utkin Variable structure systems with sliding modes , 1977 .

[13]  Yeng Chai Soh,et al.  Robust discrete‐time nonlinear sliding mode state estimation of uncertain nonlinear systems , 2007 .

[14]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[15]  Yi Xiong,et al.  Sliding mode observer for nonlinear uncertain systems , 2001, IEEE Trans. Autom. Control..

[16]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[17]  Hsiao-Ping Huang,et al.  A sliding observer for nonlinear process control , 1997 .

[18]  J. Hedrick,et al.  Observer design for a class of nonlinear systems , 1994 .

[19]  Stanislaw H. Zak,et al.  On the stabilization and observation of nonlinear/uncertain dynamic systems , 1990 .

[20]  V. Utkin,et al.  Sliding mode observers. Tutorial , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[21]  Yeng Chai Soh,et al.  High-Gain Observers With Sliding Mode for State and Unknown Input Estimations , 2009, IEEE Transactions on Industrial Electronics.

[22]  U. Ozguner,et al.  Equivalent value filters in disturbance estimation and state observation , 1999 .

[23]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[24]  Leonid M. Fridman,et al.  Second-order sliding-mode observer for mechanical systems , 2005, IEEE Transactions on Automatic Control.

[25]  R. Rajamani,et al.  Existence and design of observers for nonlinear systems: Relation to distance to unobservability , 1998 .

[26]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[27]  Yeng Chai Soh,et al.  Discrete-Time Sliding-Mode State and Unknown Input Estimations for Nonlinear Systems , 2009, IEEE Transactions on Industrial Electronics.

[28]  A. J. Koshkouei,et al.  Sliding mode state observation for non-linear systems , 2004 .

[29]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..